cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318582 Expansion of 1/(1 + x*Product_{k>=1} (1 + x^k)).

Original entry on oeis.org

1, -1, 0, 0, -1, 1, -1, 0, 1, -1, 1, 0, 0, 1, 0, 0, 0, 1, -1, 0, 1, -3, 2, -1, -3, 4, -4, 0, 3, -5, 4, 0, -2, 4, -1, 1, 0, 3, -2, 0, 6, -11, 9, -1, -13, 18, -17, 1, 13, -23, 17, -4, -8, 13, -8, 7, -6, 15, -10, -3, 33, -50, 42, 0, -56, 85, -72, 6, 59, -100, 75, -23, -34, 53, -44, 35
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 29 2018

Keywords

Examples

			G.f. = 1 - x - x^4 + x^5 - x^6 + x^8 - x^9 + x^10 + x^13 + x^17 - x^18 + x^20 - 3*x^21 + ...
		

Crossrefs

Cf. similar sequences: A067687, A299105, A299106, A299208, A302017, A318581, A331484.

Programs

  • Maple
    a:=series(1/(1+x*mul(1+x^k,k=1..100)),x=0,76): seq(coeff(a,x,n),n=0..75); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 75; CoefficientList[Series[1/(1 + x Product[(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -Sum[PartitionsQ[k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 75}]

Formula

G.f.: 1/(1 + x*Sum_{k>=0} A000009(k)*x^k).
a(0) = 1; a(n) = -Sum_{k=1..n} A000009(k-1)*a(n-k).