cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A299105 Expansion of 1/(1 - x*Product_{k>=1} (1 - x^k)).

Original entry on oeis.org

1, 1, 0, -2, -3, -1, 5, 10, 7, -9, -29, -30, 10, 77, 108, 22, -184, -351, -207, 372, 1041, 969, -516, -2835, -3655, -284, 6990, 12190, 5977, -14957, -37044, -30994, 24144, 103374, 122409, -7715, -262704, -420585, -162274, 589068, 1309674, 972747, -1057935, -3742955
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2018

Keywords

Crossrefs

Antidiagonal sums of A286354.
Cf. similar sequences: A067687, A299106, A299208, A302017, A318581, A318582, A331484.

Programs

  • Mathematica
    nmax = 43; CoefficientList[Series[1/(1 - x Product[1 - x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 43; CoefficientList[Series[1/(1 - x QPochhammer[x, x]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} (1 - x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A010815(k-1)*a(n-k).

A299208 Expansion of 1/(1 - x*Product_{k>=1} 1/(1 + x^k)).

Original entry on oeis.org

1, 1, 0, -1, -2, -1, 1, 3, 3, 1, -3, -6, -5, 1, 9, 12, 5, -9, -20, -18, 1, 26, 38, 21, -21, -61, -62, -9, 72, 120, 81, -44, -177, -205, -64, 186, 366, 293, -63, -496, -657, -304, 445, 1084, 1014, 33, -1341, -2053, -1238, 959, 3132, 3378, 770, -3474, -6260, -4619, 1656, 8809, 10929, 4306, -8520
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[1/(1 - x Product[1/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} 1/(1 + x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A081362(k-1)*a(n-k).

A318581 Expansion of 1/(1 + x*Product_{k>=1} 1/(1 - x^k)).

Original entry on oeis.org

1, -1, 0, -1, 0, -1, 1, -1, 3, -1, 5, -2, 7, -7, 9, -16, 11, -29, 20, -46, 45, -66, 94, -95, 175, -161, 294, -307, 458, -594, 715, -1096, 1193, -1891, 2132, -3106, 3916, -5063, 7083, -8484, 12347, -14770, 20867, -26310, 34898, -46771, 58967, -81665, 101680, -139951, 178094, -237620
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 29 2018

Keywords

Examples

			G.f. = 1 - x - x^3 - x^5 + x^6 - x^7 + 3*x^8 - x^9 + 5*x^10 - 2*x^11 + 7*x^12 - 7*x^13 + ...
		

Crossrefs

Cf. similar sequences: A067687, A299105, A299106, A299208, A302017, A318582, A331484.

Programs

  • Maple
    seq(coeff(series((1+x*mul((1-x^k)^(-1),k=1..n))^(-1),x,n+1), x, n), n = 0 .. 55); # Muniru A Asiru, Aug 30 2018
  • Mathematica
    nmax = 51; CoefficientList[Series[1/(1 + x Product[1/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -Sum[PartitionsP[k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 51}]

Formula

G.f.: 1/(1 + x*Sum_{k>=0} A000041(k)*x^k).
a(0) = 1; a(n) = -Sum_{k=1..n} A000041(k-1)*a(n-k).

A331484 Expansion of 1/(1 + x*Product_{k>=1} (1 - x^k)).

Original entry on oeis.org

1, -1, 2, -2, 3, -3, 3, -2, -1, 5, -13, 22, -36, 51, -68, 82, -86, 75, -31, -52, 201, -421, 732, -1125, 1575, -2024, 2344, -2370, 1807, -327, -2532, 7210, -14128, 23486, -35027, 47799, -59594, 66717, -63246, 41012, 10696, -104335, 252653, -465825, 746343
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2020

Keywords

Crossrefs

Cf. similar sequences: A067687, A299105, A299106, A299208, A302017, A318581, A318582.
Cf. A010815.

Programs

  • Mathematica
    m = 44; CoefficientList[Series[1/(1 + x*Product[1 - x^k, {k, 1, m}]), {x, 0, m}], x] (* Amiram Eldar, May 05 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/(1+x*prod(k=1, N, 1-x^k)))

Formula

a(0) = 1, a(n) = -Sum_{k=1..n} A010815(k-1)*a(n-k) for n > 0.
Showing 1-4 of 4 results.