cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318609 a(1) = 2, a(2) = 4, a(3) = 6; for n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + 9*a(n-3).

Original entry on oeis.org

2, 4, 6, 24, 90, 252, 702, 2160, 6642, 19764, 58806, 176904, 532170, 1595052, 4780782, 14346720, 43053282, 129146724, 387400806, 1162241784, 3486843450, 10460412252, 31380882462, 94143001680, 282430067922, 847289140884, 2541864234006, 7625595890664, 22876797237930
Offset: 1

Views

Author

Jianing Song, Sep 02 2018

Keywords

Comments

a(n) is the number of solutions to Sum_{i=1..n} x_i^2 == 1 (mod 3).

Examples

			a(5) = 90 since M^5 * [1, 0, 0]^T = [81, 90, 72]^T.
		

Crossrefs

A101990 gives the number of solutions to Sum_{i=1..n} x_i^2 == 0 (mod 3);
A318610 gives the number of solutions to Sum_{i=1..n} x_i^2 == 2 (mod 3).

Programs

  • Magma
    I:=[2,4,6]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+9*Self(n-3): n in [1..30]]; // Jianing Song, Sep 05 2018
  • Mathematica
    LinearRecurrence[{3, -3, 9}, {2, 4, 6}, 30] (* Jianing Song, Sep 05 2018 *)
  • PARI
    Vec(2*x*(1-x)/((1-3*x)*(1+3*x^2)) + O(x^40))
    
  • PARI
    a(n) = ([1, 0, 2 ; 2, 1, 0 ; 0, 2, 1]^n*mattranspose([1, 0, 0]))[2]; \\ Michel Marcus, Dec 20 2019
    

Formula

a(n) = middle term in M^n * [1, 0, 0]^T, where M = the 3 X 3 matrix [1, 0, 2 / 2, 1, 0 / 0, 2, 1] and T denotes transpose. [Edited by Petros Hadjicostas, Dec 19 2019]
O.g.f.: 2*x*(1 - x)/((1 - 3*x)*(1 + 3*x^2)).
E.g.f.: 1/3*(exp(3*x) + 2*cos(sqrt(3)*x - 2*Pi/3)).
a(n) = 3^(n/2 - 1)*((-i)^n*(-1 + sqrt(3)*i)/2 + i^n*(-1 - sqrt(3)*i)/2 + 3^(n/2)), where i is the imaginary unit.
a(n) = 3^(n/2 - 1)*(2*cos(n*Pi/2 - 2*Pi/3) + 3^(n/2)).
a(n) = 3^(n-1) + (-3)^(n/2-1) for even n and 3^(n-1) + (-3)^((n-1)/2) for odd n.
a(n) = a(n-1) + 2*A101990(n-1).
a(n) = A318610(n) for even n and 2*3^(n-1) - A318610(n) for odd n.
a(n) + A101990(n) + A318610(n) = 3^n.