A318624 Number of 3-member subsets of [3*n] whose elements sum to a multiple of n.
0, 1, 10, 30, 55, 91, 138, 190, 253, 327, 406, 496, 597, 703, 820, 948, 1081, 1225, 1380, 1540, 1711, 1893, 2080, 2278, 2487, 2701, 2926, 3162, 3403, 3655, 3918, 4186, 4465, 4755, 5050, 5356, 5673, 5995, 6328, 6672, 7021, 7381, 7752, 8128, 8515, 8913, 9316
Offset: 0
Examples
a(1) = 1: {1,2,3}. a(2) = 10: {1,2,3}, {1,2,5}, {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,5}, {2,4,6}, {3,4,5}, {3,5,6}. a(3) = 30: {1,2,3}, {1,2,6}, {1,2,9}, {1,3,5}, {1,3,8}, {1,4,7}, {1,5,6}, {1,5,9}, {1,6,8}, {1,8,9}, {2,3,4}, {2,3,7}, {2,4,6}, {2,4,9}, {2,5,8}, {2,6,7}, {2,7,9}, {3,4,5}, {3,4,8}, {3,5,7}, {3,6,9}, {3,7,8}, {4,5,6}, {4,5,9}, {4,6,8}, {4,8,9}, {5,6,7}, {5,7,9}, {6,7,8}, {7,8,9}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Crossrefs
Row n=3 of A318557.
Programs
-
Mathematica
LinearRecurrence[{2,-1,1,-2,1},{0,1,10,30,55,91},50] (* Harvey P. Dale, Mar 27 2019 *)
Formula
G.f.: -x*(3*x^4+4*x^3+11*x^2+8*x+1)/((x^2+x+1)*(x-1)^3).
a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5) for n>5.
3*a(n) = 5+2*A099837(n)+27*n*(n-1)/2 for n>0. - R. J. Mathar, Sep 02 2018