A318649 Numerators of the sequence whose Dirichlet convolution with itself yields squares, A000290.
1, 2, 9, 6, 25, 9, 49, 20, 243, 25, 121, 27, 169, 49, 225, 70, 289, 243, 361, 75, 441, 121, 529, 90, 1875, 169, 3645, 147, 841, 225, 961, 252, 1089, 289, 1225, 729, 1369, 361, 1521, 250, 1681, 441, 1849, 363, 6075, 529, 2209, 315, 7203, 1875, 2601, 507, 2809, 3645, 3025, 490, 3249, 841, 3481, 675, 3721, 961, 11907, 924, 4225, 1089
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Vaclav Kotesovec, Graph - the asymptotic ratio (10000 terms)
Crossrefs
Programs
-
PARI
up_to = 65537; DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A318649(n) = numerator(v318649_aux[n]); -
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p^2*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * ((n^2) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318649(k) / A318512(k) ~ n^3/(3*sqrt(Pi*log(n))) * (1 + (1 - 3*gamma/2) / (6*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 09 2025