A318650 Numerators of the sequence whose Dirichlet convolution with itself yields A057521, the powerful part of n.
1, 1, 1, 15, 1, 1, 1, 49, 35, 1, 1, 15, 1, 1, 1, 603, 1, 35, 1, 15, 1, 1, 1, 49, 99, 1, 181, 15, 1, 1, 1, 2023, 1, 1, 1, 525, 1, 1, 1, 49, 1, 1, 1, 15, 35, 1, 1, 603, 195, 99, 1, 15, 1, 181, 1, 49, 1, 1, 1, 15, 1, 1, 35, 14875, 1, 1, 1, 15, 1, 1, 1, 1715, 1, 1, 99, 15, 1, 1, 1, 603, 3235, 1, 1, 15, 1, 1, 1, 49, 1, 35, 1, 15, 1, 1, 1, 2023, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Vaclav Kotesovec, Graph - the asymptotic ratio (10^8 terms)
Programs
-
Mathematica
ff[p_, e_] := If[e > 1, p^e, 1]; a[1] = 1; a[n_] := Times @@ ff @@@ FactorInteger[n]; f[1] = 1; f[n_] := f[n] = 1/2 (a[n] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 11 2025 *)
-
PARI
up_to = 65537; A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A057521(n))); A318650(n) = numerator(v318650_aux[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A057521(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025, simplified May 11 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(3*s-2) + 1/p^(3*s-3) + 1/p^s).
Sum_{k=1..n} A318650(k) / A046644(k) ~ n^(3/2) * sqrt(2*f(3/2)/(9*Pi*log(n))) * (1 + (2/3 - gamma - f'(3/2)/(2*f(3/2))) / (2*log(n))), where
f(3/2) = Product_{p prime} (1 + 2/p^(3/2) - 1/p^(5/2)) = A328013 = 3.51955505841710664719752940369857817...
f'(3/2)/f(3/2) = Sum_{p prime} (4*p - 3) * log(p) / (1 - 2*p - p^(5/2)) = -3.90914718020692131140714384422938370058563543737256496...
and gamma is the Euler-Mascheroni constant A001620. (End)
Comments