A318653 Numerators of the sequence whose Dirichlet convolution with itself yields A007947, the squarefree kernel of n.
1, 1, 3, 1, 5, 3, 7, 1, 3, 5, 11, 3, 13, 7, 15, 3, 17, 3, 19, 5, 21, 11, 23, 3, -5, 13, 15, 7, 29, 15, 31, 3, 33, 17, 35, 3, 37, 19, 39, 5, 41, 21, 43, 11, 15, 23, 47, 9, -21, -5, 51, 13, 53, 15, 55, 7, 57, 29, 59, 15, 61, 31, 21, 5, 65, 33, 67, 17, 69, 35, 71, 3, 73, 37, -15, 19, 77, 39, 79, 15, 3, 41, 83, 21, 85, 43, 87, 11, 89, 15
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms)
Programs
-
Mathematica
rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); f[1] = 1; f[n_] := f[n] = (rad[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; a[n_] := Numerator [f[n]]; Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
-
PARI
up_to = 65537; A007947(n) = factorback(factorint(n)[, 1]); DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A007947(n))); A318653(n) = numerator(v318653_aux[n]); for(n=1, 100, print1(numerator(direuler(p=2, n, ((1 + p*X - X)/(1 - X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 08 2025
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A007947(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 08 2025: (Start)
Let f(s) = Product_{p prime} (1 + 1/p^(2*s-1) - 1/p^(2*s-2) - 1/p^s).
Sum_{k=1..n} A318653(k)/A299150(k) ~ n^2 * sqrt(Pi*f(2)/(24*log(n))) * (1 - (gamma - 1 + f'(2)/f(2) + 6*zeta'(2)/Pi^2) / (4*log(n))), where
f(2) = A065464 = Product_{p prime} (1 - 2/p^2 + 1/p^3) = 0.4282495056770944402187657075818235461212985133559361440319...
f'(2) = f(2) * Sum_{p prime} (3*p-2)*log(p) / ((p-1)*(p^2+p-1)) = f(2) * 1.469536740824614833203393993450164364663334798759143895712...
and gamma is the Euler-Mascheroni constant A001620. (End)
Comments