cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318667 Numerators of the sequence whose Dirichlet convolution with itself yields A318307, which is multiplicative with A318307(p^e) = 2^A002487(e).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, -5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, -5, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, -43, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, -5, -5, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Comments

Multiplicative because A318307 and A317934 are.

Crossrefs

Cf. A318307, A317934 (denominators).

Programs

  • PARI
    up_to = 1+(2^16);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A318307(n) = factorback(apply(e -> 2^A002487(e),factor(n)[,2]));
    v318667_aux = DirSqrt(vector(up_to, n, A318307(n)));
    A318667(n) = numerator(v318667_aux[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A318307(n) - Sum_{d|n, d>1, d 1.