cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318689 Number of powerful uniform rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 12, 19, 23, 35, 36, 63, 64, 98, 112, 173, 174, 291, 292, 473, 509, 791, 792, 1345, 1356, 2158, 2257, 3634, 3635, 6053, 6054, 9807, 10091, 16173, 16216, 26783, 26784, 43076, 43880, 70631, 70632, 114975, 114976, 184665, 186996, 298644, 298645, 481978, 482011
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Comments

A powerful uniform rooted tree with n nodes is either a single powerful uniform branch with n-1 nodes, or a powerful uniform multiset (all multiplicities are equal to the same number > 1) of powerful uniform rooted trees with a total of n-1 nodes.

Examples

			The a(8) = 12 powerful uniform rooted trees:
  (((((((o)))))))
  ((((((oo))))))
  (((((o)(o)))))
  ((((o))((o))))
  (((((ooo)))))
  (((o)(o)(o)))
  ((((oooo))))
  (((oo)(oo)))
  ((oo(o)(o)))
  (((ooooo)))
  ((oooooo))
  (ooooooo)
		

Crossrefs

Programs

  • Mathematica
    rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,And[Min@@Length/@Split[#]>=2,SameQ@@Length/@Split[#]]]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[rurt[n]],{n,15}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, my(u=WeighT(v[1..n])); v[n+1] = sumdiv(n,d,u[d]) - u[n] + v[n]); v} \\ Andrew Howroyd, Dec 09 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 09 2020