A318701 Tetrahedral numbers that are not divisible by any smaller tetrahedral number except 1.
1, 4, 10, 35, 165, 286, 969, 1771, 2925, 3654, 4495, 9139, 12341, 16215, 23426, 32509, 39711, 47905, 52394, 67525, 79079, 91881, 105995, 129766, 138415, 156849, 176851, 209934, 221815, 246905, 273819, 302621, 366145, 383306, 437989, 477191, 540274, 562475, 657359, 708561, 762355, 848046, 939929, 1004731
Offset: 1
Keywords
Examples
4 is a term because it is divisible by 1. 10 is a term because it is divisible by 1 but not by 4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
count:= 1: Res:= NULL: for i from 2 while count < 100 do r:= i*(i+1)*(i+2)/6; if not ormap(t -> (r/t)::integer,[Res]) then Res:= Res, r; count:= count+1; fi od: 1,Res; # Robert Israel, Dec 28 2018
-
Mathematica
t[n_]:=n(n+1)(n+2)/6; tQ[n_] := Module[{ans=True, tn=t[n]}, Do[If[Divisible[tn,t[i]], ans=False; Break[]],{i,2,n-1}]; ans]; t[Select[Range[100], tQ]] (* Amiram Eldar, Nov 14 2018 *)
-
PARI
t(n) = n*(n+1)*(n+2)/6; isok(n) = my(tn=t(n)); for(i=2, n-1, if (!(tn % t(i)), return (0))); return (1); lista(nn) = for (n=1, nn, if (isok(n), print1(t(n), ", "))); \\ Michel Marcus, Sep 29 2018
Extensions
a(1) = 1 inserted by Michel Marcus, Nov 09 2018