A318730 Number of cyclic compositions (necklaces of positive integers) summing to n with adjacent parts (including the last and first part) being indivisible (either way).
1, 1, 1, 1, 2, 1, 3, 2, 3, 6, 5, 8, 7, 14, 15, 21, 31, 39, 51, 69, 98, 133, 177, 254, 329, 471, 632, 902, 1230, 1710, 2370, 3270, 4591, 6384, 8898, 12429, 17252, 24230, 33783, 47405, 66254, 92860, 130142, 182469, 256262, 359676, 505231, 710059, 997953, 1404215
Offset: 1
Keywords
Examples
The a(14) = 14 cyclic compositions with adjacent parts indivisible either way: (14) (3,11) (4,10) (5,9) (6,8) (2,5,7) (2,7,5) (3,4,7) (3,7,4) (2,3,2,7) (2,3,4,5) (2,5,2,5) (2,5,4,3) (3,4,3,4)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,And[neckQ[#],And@@Not/@Divisible@@@Partition[#,2,1,1],And@@Not/@Divisible@@@Reverse/@Partition[#,2,1,1]]]&]],{n,20}]
-
PARI
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]} seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->i%j<>0 && j%i<>0))); vector(n, n, 1 + sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 27 2019
Formula
a(n) = A328601(n) + 1. - Andrew Howroyd, Oct 27 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018