cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318730 Number of cyclic compositions (necklaces of positive integers) summing to n with adjacent parts (including the last and first part) being indivisible (either way).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 6, 5, 8, 7, 14, 15, 21, 31, 39, 51, 69, 98, 133, 177, 254, 329, 471, 632, 902, 1230, 1710, 2370, 3270, 4591, 6384, 8898, 12429, 17252, 24230, 33783, 47405, 66254, 92860, 130142, 182469, 256262, 359676, 505231, 710059, 997953, 1404215
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(14) = 14 cyclic compositions with adjacent parts indivisible either way:
  (14)
  (3,11) (4,10) (5,9) (6,8)
  (2,5,7) (2,7,5) (3,4,7) (3,7,4)
  (2,3,2,7) (2,3,4,5) (2,5,2,5) (2,5,4,3) (3,4,3,4)
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,And[neckQ[#],And@@Not/@Divisible@@@Partition[#,2,1,1],And@@Not/@Divisible@@@Reverse/@Partition[#,2,1,1]]]&]],{n,20}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
    seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->i%j<>0 && j%i<>0))); vector(n, n, 1 + sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 27 2019

Formula

a(n) = A328601(n) + 1. - Andrew Howroyd, Oct 27 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018