A318729
Number of cyclic compositions (necklaces of positive integers) summing to n that have only one part or whose consecutive parts (including the last with first) are indivisible.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 2, 4, 6, 6, 8, 11, 19, 21, 30, 41, 59, 79, 112, 157, 219, 305, 430, 605, 860, 1210, 1727, 2424, 3463, 4905, 7001, 9954, 14211, 20271, 28980, 41392, 59254, 84800, 121540, 174163, 249932, 358578, 515091, 739933, 1063827, 1529767, 2201383
Offset: 1
The a(13) = 11 cyclic compositions with successive parts indivisible:
(13)
(2,11) (3,10) (4,9) (5,8) (6,7)
(2,4,7) (2,6,5) (2,8,3) (3,6,4)
(2,3,5,3)
Cf.
A000740,
A008965,
A059966,
A167606,
A285573,
A303362,
A304713,
A316476,
A318726,
A318727,
A318728,
A318730,
A328600.
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,neckQ[#]&&And@@Not/@Divisible@@@Partition[#,2,1,1]]&]],{n,20}]
-
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->i%j<>0))); vector(n, n, 1 + sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 27 2019
A328601
Number of necklace compositions of n with no part circularly followed by a divisor or a multiple.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 2, 1, 2, 5, 4, 7, 6, 13, 14, 20, 30, 38, 50, 68, 97, 132, 176, 253, 328, 470, 631, 901, 1229, 1709, 2369, 3269, 4590, 6383, 8897, 12428, 17251, 24229, 33782, 47404, 66253, 92859, 130141, 182468, 256261, 359675, 505230, 710058, 997952, 1404214
Offset: 1
The a(5) = 1 through a(13) = 6 necklace compositions (empty column not shown):
(2,3) (2,5) (3,5) (2,7) (3,7) (2,9) (5,7) (4,9)
(3,4) (4,5) (4,6) (3,8) (2,3,7) (5,8)
(2,3,5) (4,7) (2,7,3) (6,7)
(2,5,3) (5,6) (3,4,5) (2,11)
(2,3,2,3) (3,5,4) (3,10)
(2,3,2,5) (2,3,5,3)
(2,3,4,3)
The non-necklace version is
A328599.
The case forbidding divisors only is
A328600 or
A318729 (with singletons).
The non-necklace, non-circular version is
A328508.
The version for co-primality (instead of indivisibility) is
A328597.
Cf.
A000740,
A008965,
A032153,
A167606,
A318748,
A328171,
A328460,
A328593,
A328598,
A328602,
A328603,
A328608,
A328609.
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&And@@Not/@Divisible@@@Partition[#,2,1,1]&&And@@Not/@Divisible@@@Reverse/@Partition[#,2,1,1]&]],{n,10}]
-
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->i%j<>0 && j%i<>0))); vector(n, n, sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 26 2019
A318746
Number of Lyndon compositions (aperiodic necklaces of positive integers) with sum n and successive parts (including the last with the first part) being indivisible.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 2, 4, 5, 6, 8, 11, 17, 20, 29, 41, 56, 79, 107, 155, 214, 305, 422, 604, 850, 1207, 1709, 2424, 3439, 4905, 6972, 9949, 14171, 20268, 28915, 41392, 59176, 84790, 121428, 174163, 249760, 358578, 514873, 739910, 1063523, 1529767, 2200926
Offset: 1
The a(14) = 17 Lyndon compositions with successive parts indivisible:
(14)
(3,11) (4,10) (5,9) (6,8)
(2,3,9) (2,5,7) (2,7,5) (3,4,7) (3,6,5) (3,7,4)
(2,3,2,7) (2,3,4,5) (2,4,3,5) (2,4,5,3) (2,5,4,3)
(2,3,2,4,3)
Cf.
A000740,
A008965,
A059966,
A285573,
A303362,
A318726,
A318727,
A318729,
A318730,
A318731,
A318745,
A318747.
-
LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,LyndonQ[#]&&And@@Not/@Divisible@@@Partition[#,2,1,1]]&]],{n,20}]
-
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]}
seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->i%j<>0))); vector(n, n, 1 + sumdiv(n, d, moebius(d)*v[n/d])/n)} \\ Andrew Howroyd, Nov 01 2019
A318747
Number of Lyndon compositions (aperiodic necklaces of positive integers) with sum n and adjacent parts (including the last with the first part) being indivisible (either way).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 2, 3, 5, 5, 8, 7, 12, 14, 20, 31, 37, 51, 64, 96, 129, 177, 246, 328, 465, 630, 889, 1230, 1692, 2370, 3250, 4587, 6354, 8895, 12384, 17252, 24180, 33777, 47336, 66254, 92752, 130142, 182337, 256246, 359500, 505231, 709787, 997951, 1403883
Offset: 1
The a(14) = 12 Lyndon compositions with adjacent parts indivisible either way:
(14)
(3,11) (4,10) (5,9) (6,8)
(2,5,7) (2,7,5) (3,4,7) (3,7,4)
(2,3,2,7) (2,3,4,5) (2,5,4,3)
Cf.
A000740,
A008965,
A059966,
A285573,
A303362,
A318726,
A318727,
A318729,
A318730,
A318731,
A318745,
A318746.
-
LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,And[LyndonQ[#],And@@Not/@Divisible@@@Partition[#,2,1,1],And@@Not/@Divisible@@@Reverse/@Partition[#,2,1,1]]]&]],{n,20}]
-
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]}
seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->i%j<>0 && j%i<>0))); vector(n, n, 1 + sumdiv(n, d, moebius(d)*v[n/d])/n)} \\ Andrew Howroyd, Nov 01 2019
Showing 1-4 of 4 results.
Comments