A318765 a(n) = (n + 2)*(n^2 + n - 1).
-2, 3, 20, 55, 114, 203, 328, 495, 710, 979, 1308, 1703, 2170, 2715, 3344, 4063, 4878, 5795, 6820, 7959, 9218, 10603, 12120, 13775, 15574, 17523, 19628, 21895, 24330, 26939, 29728, 32703, 35870, 39235, 42804, 46583, 50578, 54795, 59240, 63919, 68838, 74003, 79420, 85095
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Bruno Berselli, Table of similar sequences (row k=3, m>1).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
GAP
List([0..50], n -> (n+2)*(n^2+n-1));
-
Julia
[(n+2)*(n^2+n-1) for n in 0:50] |> println
-
Magma
[(n+2)*(n^2+n-1): n in [0..50]];
-
Maple
seq((n+2)*(n^2+n-1),n=0..43); # Paolo P. Lava, Sep 04 2018
-
Mathematica
Table[(n + 2) (n^2 + n - 1), {n, 0, 50}]
-
Maxima
makelist((n+2)*(n^2+n-1), n, 0, 50);
-
PARI
vector(50, n, n--; (n+2)*(n^2+n-1))
-
Python
[(n+2)*(n**2+n-1) for n in range(50)]
-
Sage
[(n+2)*(n^2+n-1) for n in (0..50)]
Formula
O.g.f.: (-2 + 11*x - 4*x^2 + x^3)/(1 - x)^4.
E.g.f.: (-2 + 5*x + 6*x^2 + x^3)*exp(x).
a(n) = -A033445(-n-1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 5. - Wesley Ivan Hurt, Dec 18 2020
Comments