cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318767 G.f. satisfies: A(x) = (1+x)/(1-x) * A(x^2)*A(x^3)*A(x^4)*...*A(x^n)*... .

Original entry on oeis.org

1, 2, 4, 8, 16, 28, 52, 88, 152, 252, 416, 664, 1076, 1684, 2636, 4060, 6248, 9444, 14292, 21312, 31748, 46796, 68804, 100200, 145784, 210240, 302520, 432428, 616716, 873972, 1236136, 1738560, 2439936, 3407924, 4749160, 6589156, 9123976, 12582620, 17316052, 23745756
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2018

Keywords

Comments

Convolution of A129373 and A129374. - Vaclav Kotesovec, Nov 05 2018

Crossrefs

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A074206(k) where A074206(n) is the number of ordered factorizations of n.
a(n) ~ exp((1+r) * ((2^(1+r) - 1) * Gamma(1+r) * Zeta(1+r))^(1/(1+r)) * n^(r/(1+r)) / (r * 2^(r/(1+r)) * (-Zeta'(r))^(1/(1+r)))) * (-2*(2^(1+r) - 1) * Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(10*(1+r))) / (2^(7/25) * Pi^(29/50) * sqrt(1+r) * n^((6+5*r)/(10*(1+r)))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Nov 05 2018