cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318783 Expansion of Product_{k>=1} 1/(1 - x^k)^(d(k)-1), where d(k) = number of divisors of k (A000005).

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 7, 5, 14, 13, 27, 26, 57, 53, 102, 110, 192, 204, 353, 381, 626, 704, 1094, 1246, 1920, 2185, 3252, 3800, 5503, 6440, 9213, 10827, 15194, 18035, 24836, 29579, 40369, 48103, 64758, 77635, 103279, 123882, 163506, 196286, 256688, 308836, 400329, 481847, 620832
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 03 2018

Keywords

Comments

Convolution of A010815 and A006171.
Euler transform of A032741.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          (tau(d)-1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 03 2018
  • Mathematica
    nmax = 48; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[0, k] - 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k] x^(2 k)/(k (1 - x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (DivisorSigma[0, d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A032741(k).
G.f.: exp(Sum_{k>=1} sigma_1(k)*x^(2*k)/(k*(1 - x^k))), where sigma_1(k) = sum of divisors of k (A000203).