A318812 Number of total multiset partitions of the multiset of prime indices of n. Number of total factorizations of n.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 6, 1, 3, 1, 3, 1, 1, 1, 11, 1, 1, 2, 3, 1, 4, 1, 20, 1, 1, 1, 15, 1, 1, 1, 11, 1, 4, 1, 3, 3, 1, 1, 51, 1, 3, 1, 3, 1, 11, 1, 11, 1, 1, 1, 21, 1, 1, 3, 90, 1, 4, 1, 3, 1, 4, 1, 80, 1, 1, 3, 3, 1, 4, 1, 51, 6, 1, 1
Offset: 1
Keywords
Examples
The a(24) = 11 total multiset partitions: {1,1,1,2} {{1},{1,1,2}} {{2},{1,1,1}} {{1,1},{1,2}} {{1},{1},{1,2}} {{1},{2},{1,1}} {{{1}},{{1},{1,2}}} {{{1}},{{2},{1,1}}} {{{2}},{{1},{1,1}}} {{{1,2}},{{1},{1}}} {{{1,1}},{{1},{2}}} The a(24) = 11 total factorizations: 24, (2*12), (3*8), (4*6), (2*2*6), (2*3*4), ((2)*(2*6)), ((6)*(2*2)), ((2)*(3*4)), ((3)*(2*4)), ((4)*(2*3)).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; totfac[n_]:=1+Sum[totfac[Times@@Prime/@f],{f,Select[facs[n],1
-
PARI
MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v} seq(n)={my(v=vector(n, i, isprime(i)), u=vector(n), m=logint(n,2)+1); for(r=1, m, u += v*sum(j=r, m, (-1)^(j-r)*binomial(j-1, r-1)); v=MultEulerT(v)); u[1]=1; u} \\ Andrew Howroyd, Dec 30 2019
Comments