A318813 Number of balanced reduced multisystems with n atoms all equal to 1.
1, 1, 2, 6, 20, 90, 468, 2910, 20644, 165874, 1484344, 14653890, 158136988, 1852077284, 23394406084, 317018563806, 4587391330992, 70598570456104, 1151382852200680, 19835976878704628, 359963038816096924, 6863033015330999110, 137156667020252478684, 2867083618970831936826
Offset: 1
Keywords
Examples
The a(5) = 20 balanced reduced multisystems (with n written in place of 1^n): 5 (14) (23) (113) (122) (1112) ((1)(13)) ((1)(22)) ((1)(112)) ((3)(11)) ((2)(12)) ((2)(111)) ((11)(12)) ((1)(1)(12)) ((1)(2)(11)) (((1))((1)(12))) (((1))((2)(11))) (((2))((1)(11))) (((12))((1)(1))) (((11))((1)(2)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; totfact[n_]:=totfact[n]=1+Sum[totfact[Times@@Prime/@normize[f]],{f,Select[facs[n],1
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} seq(n)={my(v=vector(n, i, i==1), u=vector(n)); for(r=1, #v, u += v*sum(j=r, #v, (-1)^(j-r)*binomial(j-1, r-1)); v=EulerT(v)); u} \\ Andrew Howroyd, Dec 30 2019
Formula
a(n > 1) = A330679(n)/2. - Gus Wiseman, Dec 31 2019
Extensions
Terms a(14) and beyond from Andrew Howroyd, Dec 30 2019
Terminology corrected by Gus Wiseman, Dec 31 2019
Comments