cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318813 Number of balanced reduced multisystems with n atoms all equal to 1.

Original entry on oeis.org

1, 1, 2, 6, 20, 90, 468, 2910, 20644, 165874, 1484344, 14653890, 158136988, 1852077284, 23394406084, 317018563806, 4587391330992, 70598570456104, 1151382852200680, 19835976878704628, 359963038816096924, 6863033015330999110, 137156667020252478684, 2867083618970831936826
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

For n > 1, also the number of balanced reduced multisystems whose atoms are an integer partition of n with at least one part > 1. A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. - Gus Wiseman, Dec 31 2019

Examples

			The a(5) = 20 balanced reduced multisystems (with n written in place of 1^n):
  5  (14)  (23)  (113)      (122)      (1112)
                 ((1)(13))  ((1)(22))  ((1)(112))
                 ((3)(11))  ((2)(12))  ((2)(111))
                                       ((11)(12))
                                       ((1)(1)(12))
                                       ((1)(2)(11))
                                       (((1))((1)(12)))
                                       (((1))((2)(11)))
                                       (((2))((1)(11)))
                                       (((12))((1)(1)))
                                       (((11))((1)(2)))
		

Crossrefs

Programs

  • Mathematica
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    totfact[n_]:=totfact[n]=1+Sum[totfact[Times@@Prime/@normize[f]],{f,Select[facs[n],1
    				
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    seq(n)={my(v=vector(n, i, i==1), u=vector(n)); for(r=1, #v, u += v*sum(j=r, #v, (-1)^(j-r)*binomial(j-1, r-1)); v=EulerT(v)); u} \\ Andrew Howroyd, Dec 30 2019

Formula

a(n > 1) = A330679(n)/2. - Gus Wiseman, Dec 31 2019

Extensions

Terms a(14) and beyond from Andrew Howroyd, Dec 30 2019
Terminology corrected by Gus Wiseman, Dec 31 2019