A305127 Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^(sigma(k)/k), where sigma(k) is the sum of the divisors of k.
1, 1, 5, 23, 179, 1279, 13699, 135085, 1764377, 22527521, 344625461, 5283739471, 94562354875, 1685808248383, 33947023942259, 694786150879829, 15613612524749489, 357353282848083265, 8880505496901812197, 224851013929747732231, 6106205671049245677251, 169523515381173773551871
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..438
- Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
with(numtheory): a := proc(n) option remember; `if`(n = 0, 1, add(add(sigma(d), d = divisors(j))*a(n-j), j = 1..n)/n) end proc; seq(n!*a(n), n = 0..20); # Vaclav Kotesovec, Sep 04 2018
-
Mathematica
nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[1, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! nmax = 21; CoefficientList[Series[Exp[Sum[Sum[x^(j k)/(j k (1 - x^(j k))), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d DivisorSigma[-1, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}] nmax = 21; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[1, k]/k, j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2018 *)
Formula
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(j*k*(1 - x^(j*k)))).
log(a(n)/n!) ~ sqrt(n) * Pi^2 / 3. - Vaclav Kotesovec, Sep 04 2018
Comments