cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A305127 Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^(sigma(k)/k), where sigma(k) is the sum of the divisors of k.

Original entry on oeis.org

1, 1, 5, 23, 179, 1279, 13699, 135085, 1764377, 22527521, 344625461, 5283739471, 94562354875, 1685808248383, 33947023942259, 694786150879829, 15613612524749489, 357353282848083265, 8880505496901812197, 224851013929747732231, 6106205671049245677251, 169523515381173773551871
Offset: 0

Views

Author

Ilya Gutkovskiy, May 26 2018

Keywords

Comments

a(n)/n! is the Euler transform of [1, 3/2, 4/3, 7/4, 6/5, ... = sums of reciprocals of divisors of 1, 2, 3, 4, 5, ...].

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc(n) option remember; `if`(n = 0, 1, add(add(sigma(d), d = divisors(j))*a(n-j), j = 1..n)/n) end proc; seq(n!*a(n), n = 0..20); # Vaclav Kotesovec, Sep 04 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[1, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Exp[Sum[Sum[x^(j k)/(j k (1 - x^(j k))), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d DivisorSigma[-1, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]
    nmax = 21; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[1, k]/k, j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2018 *)

Formula

E.g.f.: Product_{k>=1} 1/(1 - x^k)^(A017665(k)/A017666(k)).
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(j*k*(1 - x^(j*k)))).
log(a(n)/n!) ~ sqrt(n) * Pi^2 / 3. - Vaclav Kotesovec, Sep 04 2018

A318975 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^phi(k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 2, 4, 10, 20, 42, 80, 154, 288, 522, 940, 1658, 2892, 4970, 8456, 14218, 23696, 39122, 64044, 104042, 167732, 268602, 427248, 675482, 1061632, 1659298, 2579676, 3990418, 6142892, 9412906, 14360136, 21814698, 33004704, 49739426, 74677924, 111713658
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 06 2018

Keywords

Comments

Convolution of A299069 and A061255.

Examples

			a(n) ~ exp(3^(4/3) * (7*Zeta(3))^(1/3) * n^(2/3) / (2*Pi^(2/3)) - 1/6) * A^2 * (7*Zeta(3))^(1/9) / (sqrt(2) * 3^(7/18) * Pi^(8/9) * n^(11/18)), where A is the Glaisher-Kinkelin constant A074962.
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^EulerPhi[k], {k, 1, nmax}], {x, 0, nmax}], x]

A318976 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(phi(k)/k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 2, 6, 32, 196, 1512, 13384, 135872, 1545744, 19441952, 268386784, 4018603008, 65021744704, 1127284876928, 20880206388864, 410781080941568, 8561002328678656, 188224613741879808, 4355496092560324096, 105752112730661347328, 2688539359466319184896
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 06 2018

Keywords

Comments

Convolution of A088009 and A000262.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(EulerPhi[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
    nmax = 20; CoefficientList[Series[E^(x*(2 + x)/(1 - x^2)), {x, 0, nmax}], x] * Range[0, nmax]!

Formula

E.g.f.: exp(x*(2 + x)/(1 - x^2)).
a(n) ~ 2^(-3/4) * 3^(1/4) * exp(sqrt(6*n) - n - 1/2) * n^(n - 1/4).

A318977 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(tau(k)/k), where tau is A000005.

Original entry on oeis.org

1, 2, 8, 44, 292, 2296, 21472, 221168, 2554544, 32617952, 452957056, 6788855872, 110098330048, 1900192498304, 34971968379392, 683452436531456, 14097619892177152, 306168410773570048, 6998327049216231424, 167369475021548506112, 4187842602663179396096
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 06 2018

Keywords

Comments

Convolution of A318696 and A318695.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(DivisorSigma[0, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

A318769 Expansion of e.g.f. Product_{k>=1} (1 + x^k)^(sigma(k)/k), where sigma(k) is the sum of the divisors of k.

Original entry on oeis.org

1, 1, 3, 17, 83, 639, 5749, 53227, 561273, 7216577, 94292531, 1352253561, 21657812923, 359338829407, 6460367397093, 126124578755939, 2527688612931569, 54137820027005697, 1236730462664172643, 29137619131277727457, 725282418459957414051, 18981526480933601454911
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 03 2018

Keywords

Comments

a(n)/n! is the weigh transform of [1, 3/2, 4/3, 7/4, 6/5, ... = sums of reciprocals of divisors of 1, 2, 3, 4, 5, ...].

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc(n) option remember; `if`(n = 0, 1, add(add(-(-1)^(j/d)*sigma(d), d = divisors(j))*a(n-j), j = 1..n)/n) end proc; seq(n!*a(n), n = 0..20); # Vaclav Kotesovec, Sep 04 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[1, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) x^(j k)/(j k (1 - x^(j k))), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d DivisorSigma[-1, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]
    nmax = 21; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[1, k]/k, j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2018 *)

Formula

E.g.f.: Product_{k>=1} (1 + x^k)^(A017665(k)/A017666(k)).
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(j*k*(1 - x^(j*k)))).
log(a(n)/n!) ~ sqrt(n/2) * Pi^2 / 3. - Vaclav Kotesovec, Sep 04 2018
a(n)/n! ~ c * exp(sqrt(n/2)*Pi^2/3) / n^(3/4 + log(2)/4), where c = 0.15653645678497413538057076667218805302154965061194080137... - Vaclav Kotesovec, Sep 05 2018
Showing 1-5 of 5 results.