A318848 Number of complete tree-partitions of a multiset whose multiplicities are the prime indices of n.
1, 1, 1, 1, 2, 3, 5, 4, 12, 9, 12, 17, 34, 29, 44, 26, 92, 90, 277, 68, 171, 93, 806, 144, 197, 309, 581, 269, 2500, 428, 7578, 236, 631, 1025, 869, 954, 24198, 3463, 2402, 712, 75370, 1957, 243800, 1040, 3200, 11705, 776494, 1612, 4349, 2358, 8862, 3993, 2545777
Offset: 1
Keywords
Examples
The a(12) = 17 complete tree-partitions of {1,1,2,3} with the leaves (x) replaced with just x: (1(1(23))) (1(2(13))) (1(3(12))) (2(1(13))) (2(3(11))) (3(1(12))) (3(2(11))) ((11)(23)) ((12)(13)) (1(123)) (2(113)) (3(112)) (11(23)) (12(13)) (13(12)) (23(11)) (1123)
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m]; Table[Length[Select[allmsptrees[nrmptn[n]],FreeQ[#,{?AtomQ,_}]&]],{n,20}]
Extensions
More terms from Jinyuan Wang, Jun 26 2020
Comments