cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318848 Number of complete tree-partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 4, 12, 9, 12, 17, 34, 29, 44, 26, 92, 90, 277, 68, 171, 93, 806, 144, 197, 309, 581, 269, 2500, 428, 7578, 236, 631, 1025, 869, 954, 24198, 3463, 2402, 712, 75370, 1957, 243800, 1040, 3200, 11705, 776494, 1612, 4349, 2358, 8862, 3993, 2545777
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A tree-partition of m is either m itself or a sequence of tree-partitions, one of each part of a multiset partition of m with at least two parts. A tree-partition is complete if the leaves are all multisets of length 1.

Examples

			The a(12) = 17 complete tree-partitions of {1,1,2,3} with the leaves (x) replaced with just x:
  (1(1(23)))
  (1(2(13)))
  (1(3(12)))
  (2(1(13)))
  (2(3(11)))
  (3(1(12)))
  (3(2(11)))
  ((11)(23))
  ((12)(13))
  (1(123))
  (2(113))
  (3(112))
  (11(23))
  (12(13))
  (13(12))
  (23(11))
  (1123)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Length[Select[allmsptrees[nrmptn[n]],FreeQ[#,{?AtomQ,_}]&]],{n,20}]

Formula

a(n) = A281119(A181821(n)).
a(prime(n)) = A196545(n)
a(2^n) = A000311(n).

Extensions

More terms from Jinyuan Wang, Jun 26 2020