A318849 Number of orderless tree-partitions of a multiset whose multiplicities are the prime indices of n.
1, 1, 2, 2, 4, 6, 11, 8, 27, 20, 30, 38, 96, 74, 114, 58, 308, 234, 1052, 176, 509, 278, 3648, 374, 600, 1076, 1760, 814, 13003, 1306, 47006, 612, 2226, 4200, 3094, 2914, 172605, 16588, 9814, 2168, 640662, 6998, 2402388, 3698, 11496, 65936, 9082538, 4914, 17996
Offset: 1
Keywords
Examples
The a(7) = 11 orderless tree-partitions of {1,1,1,1}: (1111) ((1)(111)) ((11)(11)) ((1)(1)(11)) ((1)((1)(11))) ((11)((1)(1))) ((1)(1)(1)(1)) ((1)((1)(1)(1))) ((1)(1)((1)(1))) ((1)((1)((1)(1)))) (((1)(1))((1)(1)))
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; olmsptrees[m_]:=Prepend[Union@@Table[Sort/@Tuples[olmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m]; Table[Length[olmsptrees[nrmptn[n]]],{n,15}]
Extensions
More terms from Jinyuan Wang, Jun 26 2020
Comments