cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318882 Total length of transient and terminal cycle if unitary-proper-divisor-sum function f(x) = A063919(x) is iterated and the initial value is n. Number of distinct terms in iteration list.

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 3, 2, 4, 3, 2, 2, 4, 2, 4, 3, 5, 2, 4, 2, 3, 2, 4, 2, 3, 2, 2, 4, 5, 3, 5, 2, 6, 3, 5, 2, 3, 2, 3, 4, 4, 2, 5, 2, 5, 4, 5, 2, 3, 3, 3, 3, 3, 2, 1, 2, 6, 3, 2, 3, 3, 2, 6, 3, 7, 2, 5, 2, 6, 3, 5, 3, 2, 2, 6, 2, 4, 2, 6, 3, 5, 5, 5, 2, 1, 4, 5, 4, 6, 3, 6, 2, 6, 4, 4, 2, 3, 2, 6, 6
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2018, after Labos Elemer's A097032

Keywords

Comments

This sequence implements the original definition given for A097032.

Examples

			For n = 1, A063919(1) = 1, that is, we immediately end with a terminal cycle of length 1 without a preceding transient part, thus a(1) = 0+1 = 1.
For n = 2, A063919(2) = 1, and A063919(1) = 1, so we end with a terminal cycle of length 1, after a transient part of length 1, thus a(2) = 1+1 = 2.
For n = 30, A063919(30) = 42, A063919(42) = 54, A063919(54) = 30, thus a(30) = a(42) = a(54) = 0+3 = 3, as 30, 42 and 54 are all contained in their own terminal cycle of length 3, without a preceding transient part.
For n = 1506, the iteration-list is {1506, 1518, 1938, 2382, 2394, 2406, [2418, 2958, 3522, 3534, 4146, 4158, 3906, 3774, 4434, 4446, 3954, 3966, 3978, 3582, 2418, ..., ad infinitum]}. After a transient of length 6 the iteration ends in a cycle of length 14, thus a(1506) = 6+14 = 20.
		

Crossrefs

Cf. A002827 (the positions of ones after the initial 1).

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>1
    a318882[n_] := Map[Length[NestWhileList[a063919, #, UnsameQ, All]]-1&, Range[n]]
    a318882[105] (* Hartmut F. W. Hoft, Jan 25 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A063919(n) = if(1==n,n,A034460(n));
    A318882(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(j-1), mapput(visited, n, j)); n = A063919(n)); };
    \\ Or by using lists:
    pil(item,lista) = { for(i=1,#lista,if(lista[i]==item,return(i))); (0); };
    A318882(n) = { my(visited = List([]), k); for(j=1, oo, if((k = pil(n,visited)) > 0, return(j-1)); listput(visited, n); n = A063919(n)); };

Formula

a(n) = A097031(n) + A318883(n).
a(n) = A097032(n) + A318880(n) - 1.