cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318883 Number of transient terms if unitary-proper-divisor-sum-function f(x) = A063919(x) is iterated and the initial value is n.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 3, 2, 4, 1, 3, 1, 2, 1, 3, 1, 0, 1, 1, 3, 4, 2, 4, 1, 5, 2, 4, 1, 0, 1, 2, 3, 3, 1, 4, 1, 4, 3, 4, 1, 0, 2, 2, 2, 2, 1, 0, 1, 5, 2, 1, 2, 2, 1, 5, 2, 6, 1, 4, 1, 5, 2, 4, 2, 1, 1, 5, 1, 3, 1, 5, 2, 4, 4, 4, 1, 0, 3, 4, 3, 5, 2, 5, 1, 5, 3, 1, 1, 1, 1, 5, 5
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2018, after Labos Elemer's A097033

Keywords

Comments

This sequence implements the original definition given for A097033.

Examples

			For n = 1, A063919(1) = 1, that is, we immediately end with a terminal cycle (of length 1 in this case), thus there are no transient part, and a(1) = 0.
For n = 2, A063919(2) = 1, and A063919(1) = 1, so we end with a terminal cycle after a transient part of length 1, thus a(2) = 1.
For n = 30, A063919(30) = 42, A063919(42) = 54, A063919(54) = 30, thus a(30) = a(42) = a(54) = 0, as 30, 42 and 54 are all contained in their own terminal cycle, without a preceding transient part.
For n = 1506, the iteration-list is {1506, 1518, 1938, 2382, 2394, 2406, [2418, 2958, 3522, 3534, 4146, 4158, 3906, 3774, 4434, 4446, 3954, 3966, 3978, 3582, 2418, ..., ad infinitum]}. After a transient of length 6 the iteration ends in a cycle of length 14, thus a(1506) = 6.
If a(n) = 0, then n is a term in an attractor set like A002827, A063991, A097024, A097030.
		

Crossrefs

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>1
    transient[k_] := Module[{iter=NestWhileList[a063919, k, UnsameQ, All]}, Position[iter, Last[iter]][[1, 1]]]-1
    a318883[n_] := Map[transient, Range[n]]
    a318883[105] (* Hartmut F. W. Hoft, Jan 25 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A063919(n) = if(1==n,n,A034460(n));
    A318883(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(mapget(visited, n)-1), mapput(visited, n, j)); n = A063919(n)); };
    \\ Or by using lists:
    pil(item,lista) = { for(i=1,#lista,if(lista[i]==item,return(i))); (0); };
    A318883(n) = { my(visited = List([]), k); for(j=1, oo, if((k = pil(n,visited)) > 0, return(k-1)); listput(visited, n); n = A063919(n)); };

Formula

a(n) = A318882(n) - A097031(n).
a(n) = A097033(n) + A318880(n) - 1.