A318915 Number of joining pairs of integer partitions of n.
1, 1, 3, 5, 11, 15, 33, 41, 77, 105, 173, 215, 381, 449, 699, 911, 1335, 1611, 2433, 2867, 4179, 5113, 6903, 8251, 11769, 13661, 18177, 22011, 28997, 33711, 45251
Offset: 0
Examples
The sequence of joining pairs of integer partitions begins: ()() (1)(1) (2)(2) (3)(3) (4)(4) (5)(5) (2)(11) (3)(21) (4)(31) (5)(41) (11)(2) (3)(111) (4)(22) (5)(32) (21)(3) (4)(211) (5)(311) (111)(3) (4)(1111) (5)(221) (31)(4) (5)(2111) (31)(22) (5)(11111) (22)(4) (41)(5) (22)(31) (41)(32) (211)(4) (32)(5) (1111)(4) (32)(41) (311)(5) (221)(5) (2111)(5) (11111)(5)
Links
- P. Erdős, J. Nicolas and A. Sárközy, On the number of pairs of partitions of n without common subsums, Colloquium Mathematicae, 63 (1992), 61-83.
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; ptncaps[y_]:=Union[Map[Sort[Total/@#,Greater]&,mps[y],{1}]]; Table[Select[Tuples[IntegerPartitions[n],2],Intersection@@ptncaps/@#=={{n}}&]//Length,{n,6}]
Formula
a(n) >= 2 * A000041(n) - 1. - Alois P. Heinz, Sep 06 2018
Extensions
a(13)-a(30) from Alois P. Heinz, Sep 05 2018
Comments