cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318947 Column 2 of triangle A318945.

Original entry on oeis.org

0, 0, 0, 0, 1, 6, 26, 97, 331, 1064, 3277, 9775, 28448, 81201, 228211, 633384, 1740037, 4740327, 12825008, 34500649, 92372683, 246352952, 654878173, 1736172895, 4592568896, 12125944161, 31967715811, 84170419272, 221388694261, 581807602839, 1527909651152, 4010192518105
Offset: 0

Views

Author

N. J. A. Sloane, Sep 18 2018

Keywords

Crossrefs

Cf. A318945.

Programs

  • GAP
    Concatenation([0,0,0],List([3..31],n->Fibonacci(2*n)-(n^2+9*n+28)*2^(n-6))); # Muniru A Asiru, Oct 28 2018
  • Maple
    a := n -> `if`(n < 3, 0, combinat:-fibonacci(2*n) - (n^2 + 9*n + 28)*2^(n - 6)):
    seq(a(n), n=0..31); # Peter Luschny, Oct 28 2018

Formula

Let alpha(n) = Sum_{k=0..n} binomial(2*n-1-k,k-1)*hypergeom([2,2,1-k], [1,1-2*k+2*n], -1) then alpha(n) = a(n+3) for n >= 0. - Peter Luschny, Oct 28 2018
Conjectures from Colin Barker, Oct 28 2018: (Start)
G.f.: x^4*(1 - x)^3 / ((1 - 2*x)^3*(1 - 3*x + x^2)).
a(n) = 9*a(n-1) - 31*a(n-2) + 50*a(n-3) - 36*a(n-4) + 8*a(n-5) for n>7. (End)

Extensions

More terms from Peter Luschny, Oct 28 2018
a(30) corrected by Muniru A Asiru, Oct 28 2018

A318946 Column 1 of triangle A318945.

Original entry on oeis.org

0, 0, 0, 1, 5, 19, 64, 201, 603, 1752, 4973, 13871, 38176, 103985, 280947, 754216, 2014469, 5358823, 14209456, 37580841, 99188427, 261360696, 687777245, 1808000351, 4748806720, 12464634209, 32699621859, 85747477576, 224777691893, 589072137367, 1543445353168
Offset: 0

Views

Author

N. J. A. Sloane, Sep 18 2018

Keywords

Crossrefs

Cf. A318945.

Programs

  • Maple
    a := n -> `if`(n < 2, 0, combinat:-fibonacci(2*n) - (n + 4)*2^(n - 3)):
    seq(a(n), n=0..30); # Peter Luschny, Oct 28 2018

Formula

Conjectures from Colin Barker, Oct 28 2018: (Start)
G.f.: x^3*(1 - x)^2 / ((1 - 2*x)^2*(1 - 3*x + x^2)).
a(n) = 7*a(n-1) - 17*a(n-2) + 16*a(n-3) - 4*a(n-4) for n>5.
(End)

Extensions

More terms from Peter Luschny, Oct 28 2018

A319405 Column 3 of triangle A318945.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 7, 34, 139, 512, 1757, 5727, 17952, 54577
Offset: 0

Views

Author

N. J. A. Sloane, Sep 18 2018

Keywords

Crossrefs

Cf. A318945.
Showing 1-3 of 3 results.