cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318945 Triangle read by rows: T(n,k) (n>=2, 0 <= k <= n-2) = number of Dyck paths with k valleys of altitude k.

Original entry on oeis.org

1, 4, 1, 13, 5, 1, 39, 19, 6, 1, 112, 64, 26, 7, 1, 313, 201, 97, 34, 8, 1, 859, 603, 331, 139, 43, 9, 1, 2328, 1752, 1064, 512, 191, 53, 10, 1
Offset: 2

Views

Author

N. J. A. Sloane, Sep 18 2018

Keywords

Examples

			Triangle begins:
1,
4,1,
13,5,1,
39,19,6,1,
112,64,26,7,1,
313,201,97,34,8,1,
859,603,331,139,43,9,1,
2328,1752,1064,512,191,53,10,1,
...
		

Crossrefs

Columns 0, 1, 2. 3 are A105693, A318946, A318947, A319405.

A320905 T(n, k) = binomial(2*n - 1 - k, k - 1)*hypergeom([2, 2, 1-k], [1, 1 - 2*k + 2*n], -1), triangle read by rows, T(n, k) for n >= 1 and 1 <= k <= n.

Original entry on oeis.org

1, 1, 5, 1, 7, 18, 1, 9, 31, 56, 1, 11, 48, 111, 160, 1, 13, 69, 198, 351, 432, 1, 15, 94, 325, 699, 1023, 1120, 1, 17, 123, 500, 1280, 2223, 2815, 2816, 1, 19, 156, 731, 2186, 4458, 6562, 7423, 6912, 1, 21, 193, 1026, 3525, 8330, 14198, 18324, 18943, 16640
Offset: 1

Views

Author

Peter Luschny, Oct 28 2018

Keywords

Examples

			Triangle starts:
[1] 1
[2] 1,  5
[3] 1,  7,  18
[4] 1,  9,  31,  56
[5] 1, 11,  48, 111,  160
[6] 1, 13,  69, 198,  351,  432
[7] 1, 15,  94, 325,  699, 1023, 1120
[8] 1, 17, 123, 500, 1280, 2223, 2815, 2816
[9] 1, 19, 156, 731, 2186, 4458, 6562, 7423, 6912
		

Crossrefs

Row sums with shifted indices in A318947.
T(n, n) = A001793(n).

Programs

  • Maple
    T := (n, k) -> binomial(2*n-1-k,k-1)*hypergeom([2,2,1-k], [1,1-2*k+2*n], -1):
    seq(seq(simplify(T(n, k)), k=1..n), n=1..10);
  • Mathematica
    T[n_, k_] := Sum[Binomial[2*n-k, 2*n-2*k+1+j]*Binomial[j+2, 2],{j, 0, 2*n-k}]; Flatten[Table[T[n, k], {n, 1, 10}, {k, 1, n}]] (* Detlef Meya, Dec 31 2023 *)
  • PARI
    T(n, k) = {sum(j=0, 2*n-k, binomial(2*n-k, 2*n - 2*k + 1 + j) * binomial(j+2, 2))} \\ Andrew Howroyd, Dec 31 2023
    
  • Python
    from functools import cache
    @cache
    def T(n, k):
        if k < 1 or n < 1: return 0
        if k == 1: return 1
        if k == n: return n * (n + 3) * 2**(n - 3)
        return T(n-1, k) + 2*T(n-1, k-1) - T(n-2, k-2)
    for n in range(1, 10): print([T(n, k) for k in range(1, n+1)])
    # after Detlef Meya, Peter Luschny, Jan 01 2024

Formula

T(n, k) = Sum_{j=0..2*n-k} binomial(2*n-k, 2*n - 2*k + 1 + j)*binomial(j+2, 2). - Detlef Meya, Dec 31 2023

A320907 Row sums of A320906.

Original entry on oeis.org

0, 1, 7, 33, 130, 461, 1525, 4802, 14577, 43025, 124226, 352437, 985821, 2725858, 7466185, 20291193, 54791842, 147164525, 393517477, 1048395650, 2784568545, 7377137441, 19503081602, 51470797413, 135641216685, 357029910946, 938837513785, 2466747164937
Offset: 0

Views

Author

Peter Luschny, Oct 28 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Sum[Binomial[2*n + 1 - k, 2*n + 2 - 2*k + j]*Binomial[j + 2, 2], {j, 0, 2*n + 1 - k}], {k, 0, n}]; Flatten[Table[a[n], {n, 0, 27}]] (* Detlef Meya, Jan 09 2024 *)

Formula

Conjectures from Colin Barker, Oct 28 2018: (Start)
G.f.: x*(1 - x)^2 / ((1 - 2*x)^3*(1 - 3*x + x^2)).
a(n) = 9*a(n-1) - 31*a(n-2) + 50*a(n-3) - 36*a(n-4) + 8*a(n-5) for n>4. (End)
a(n) = Sum_{k=0..n} Sum_{j=0..2*n + 1 - k} binomial(2*n + 1 - k, 2*n + 2 - 2*k + j)*binomial(j + 2, 2). - Detlef Meya, Jan 09 2024
Showing 1-3 of 3 results.