A318949 Number of ways to write n as an orderless product of orderless sums.
1, 2, 3, 8, 7, 17, 15, 36, 36, 56, 56, 123, 101, 165, 197, 310, 297, 490, 490, 767, 837, 1114, 1255, 1925, 1986, 2638, 3110, 4108, 4565, 6201, 6842, 9043, 10311, 12904, 14988, 19398, 21637, 26995, 31488, 39180, 44583, 55418, 63261, 77627, 89914, 108068, 124754
Offset: 1
Keywords
Examples
The a(6) = 17 ways: (6) (2)*(3) (3+3) (2)*(2+1) (4+2) (2)*(1+1+1) (5+1) (1+1)*(3) (2+2+2) (1+1)*(2+1) (3+2+1) (1+1)*(1+1+1) (4+1+1) (2+2+1+1) (3+1+1+1) (2+1+1+1+1) (1+1+1+1+1+1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]]; prodsums[n_]:=Union[Sort/@Join@@Table[Tuples[IntegerPartitions/@fac],{fac,facs[n]}]]; Table[Length[prodsums[n]],{n,30}]
-
PARI
MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v} seq(n)={MultEulerT(vector(n, n, numbpart(n)))} \\ Andrew Howroyd, Oct 26 2019
Formula
Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^p(k), where p(k) = number of partitions of k (A000041). - Ilya Gutkovskiy, Oct 26 2019