cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318949 Number of ways to write n as an orderless product of orderless sums.

Original entry on oeis.org

1, 2, 3, 8, 7, 17, 15, 36, 36, 56, 56, 123, 101, 165, 197, 310, 297, 490, 490, 767, 837, 1114, 1255, 1925, 1986, 2638, 3110, 4108, 4565, 6201, 6842, 9043, 10311, 12904, 14988, 19398, 21637, 26995, 31488, 39180, 44583, 55418, 63261, 77627, 89914, 108068, 124754
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2018

Keywords

Examples

			The a(6) = 17 ways:
  (6)              (2)*(3)
  (3+3)            (2)*(2+1)
  (4+2)            (2)*(1+1+1)
  (5+1)            (1+1)*(3)
  (2+2+2)          (1+1)*(2+1)
  (3+2+1)          (1+1)*(1+1+1)
  (4+1+1)
  (2+2+1+1)
  (3+1+1+1)
  (2+1+1+1+1)
  (1+1+1+1+1+1)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    prodsums[n_]:=Union[Sort/@Join@@Table[Tuples[IntegerPartitions/@fac],{fac,facs[n]}]];
    Table[Length[prodsums[n]],{n,30}]
  • PARI
    MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
    seq(n)={MultEulerT(vector(n, n, numbpart(n)))} \\ Andrew Howroyd, Oct 26 2019

Formula

Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^p(k), where p(k) = number of partitions of k (A000041). - Ilya Gutkovskiy, Oct 26 2019