A319015 Decimal expansion of Sum_{k>=0} 1/2^(k^2).
1, 5, 6, 4, 4, 6, 8, 4, 1, 3, 6, 0, 5, 9, 3, 8, 5, 7, 9, 3, 3, 4, 7, 2, 9, 2, 7, 4, 2, 7, 2, 4, 7, 5, 6, 6, 2, 3, 0, 6, 2, 5, 8, 2, 6, 9, 9, 7, 0, 4, 3, 9, 0, 4, 6, 4, 4, 4, 5, 0, 5, 5, 9, 6, 0, 2, 8, 4, 8, 0, 1, 3, 3, 1, 7, 9, 5, 7, 8, 4, 0, 6, 6, 5, 9, 1, 3, 0, 6, 4, 0, 1, 6, 2, 4, 6, 9, 1, 4, 8, 4, 4, 7, 4, 0, 2, 4, 7, 1, 6
Offset: 1
Examples
1.5644684136059385793347... = (1.1001000010000001000000001...)_2. | | | | | | 0 1 4 9 16 25
Links
- David H. Bailey, Jonathan M. Borwein, Richard E. Crandall, and Carl Pomerance, On the binary expansions of algebraic numbers, Journal de théorie des nombres de Bordeaux, Vol. 16, No. 3 (2004), pp. 487-518. See p. 490.
- Yu. V. Nesterenko, Modular functions and transcendence questions (in Russian), Sbornik: Mathematics, Vol. 187 (1996), pp. 65-96, English translation, ibid., pp. 1319-1348.
- Michael Ian Shamos, Property Enumerators and a Partial Sum Theorem, 2011; alternative link.
- Index entries for transcendental numbers.
Programs
-
Mathematica
RealDigits[(1 + EllipticTheta[3, 0, 1/2])/2, 10, 110] [[1]]
-
PARI
suminf(k=0, 1/2^(k^2)) \\ Michel Marcus, Sep 08 2018
Formula
Equals (1 + theta_3(1/2))/2, where theta_3 is the Jacobi theta function.
Equals 1 + Sum_{k>=1} lambda(k)/(2^k - 1), where lambda is the Liouville function (A008836). - Amiram Eldar, Apr 30 2020
Equals 1 + Sum_{k>=1} floor(sqrt(k))/2^(k+1) (Shamos, 2011, p. 4). - Amiram Eldar, Mar 12 2024
Comments