cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319059 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..1, with k running over the positive integers; square array, read by antidiagonals, downwards.

Original entry on oeis.org

17, 37, 26, 53, 82, 18, 73, 107, 68, 148, 89, 118, 99, 215, 239, 109, 143, 226, 362, 360, 249, 125, 199, 276, 606, 485, 577, 423, 145, 224, 293, 717, 596, 653, 653, 28, 161, 226, 324, 753, 606, 868, 2098, 784, 63, 181, 251, 374, 766, 699, 1520, 2526, 1921, 571
Offset: 1

Views

Author

Felix Fröhlich, Sep 09 2018

Keywords

Examples

			The array starts as follows:
    17,   37,   53,    73,    89,   109,   125,   145,   161,   181,   197,   217
    26,   82,  107,   118,   143,   199,   224,   226,   251,   307,   332,   343
    18,   68,   99,   226,   276,   293,   324,   374,   393,   557,   607,   618
   148,  215,  362,   606,   717,   753,   766,  1207,  1304,  1322,  1371,  1451
   239,  360,  485,   596,   606,   699,   844,   846,   995,  1330,  1371,  1451
   249,  577,  653,   868,  1520,  1948,  1958,  2098,  2178,  2446,  2536,  2850
   423,  653, 2098,  2526,  2889,  3180,  4270,  4400,  4625,  4755,  5416,  5531
    28,  784, 1921,  2234,  2293,  3004,  4233,  4566,  4631,  4762,  4938,  5353
    63,  571, 1545,  3304,  3585,  3969,  4204,  5420,  6995,  7583,  7765,  7805
   374, 1492, 2509,  3323,  3405,  4472,  5651,  6154,  6492,  7805, 12348, 13040
   117, 1693, 2157,  4431,  4688,  6154,  6728,  6844,  6962,  9089, 11533, 13689
   787, 1368, 3214,  4106,  4895,  5552,  5830,  5900,  8892,  9229, 11389, 14272
  2059, 2152, 5548,  8354, 10557, 14368, 20320, 27657, 29296, 29945, 31434, 31452
  1085, 1771, 2210, 17902, 18793, 19679, 23670, 23676, 24298, 24928, 25885, 31800
   655, 1586, 1914,  3330,  3818,  7772,  8765,  9436,  9459, 12087, 13183, 24501
		

Crossrefs

Cf. A244249, A256236, A259075 (column 1).
Cf. analog for i = 0..t: A319060 (t=2), A319061 (t=3), A319062 (t=4), A319063 (t=5), A319064 (t=6), A319065 (t=7).

Programs

  • Mathematica
    rows = 10; t = 1;
    T = Table[lst = {}; b = 2;
       While[Length[lst] < rows,
        p = Prime[n + Range[0, t]];
        If[AllTrue[PowerMod[b, (p - 1), p^2], # == 1 &], AppendTo[lst, b]]; b++];
       lst, {n, rows}];
    T // TableForm (* Print the A(n,k) table *)
    Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Sep 30 2019 *)
  • PARI
    printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 1, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==2, print1(b, ", "); c++); if(c==terms, break))
    array(rows, cols) = for(x=1, rows, printrow(x, cols); print(""))
    array(8, 10) \\ print initial 8 rows and 10 columns of array