A319060 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..2, with k running over the positive integers; square array, read by antidiagonals, downwards.
449, 557, 226, 593, 557, 1207, 649, 901, 1451, 606, 701, 1126, 2743, 1371, 3469, 757, 1207, 2774, 1451, 5938, 653, 793, 1243, 3657, 1667, 7624, 2098, 5649, 901, 1324, 4232, 2175, 11980, 4755, 10538, 26645, 1349, 1549, 4607, 2774, 12248, 5845, 11137, 35973
Offset: 1
Examples
The array starts as follows: 449, 557, 593, 649, 701, 757, 793, 901, 1349, 1457 226, 557, 901, 1126, 1207, 1243, 1324, 1549, 2224, 2449 1207, 1451, 2743, 2774, 3657, 4232, 4607, 5176, 6682, 7251 606, 1371, 1451, 1667, 2175, 2774, 4244, 8201, 13543, 13670 3469, 5938, 7624, 11980, 12248, 13543, 17554, 20809, 23344, 24675 653, 2098, 4755, 5845, 24314, 24675, 25876, 30270, 39016, 40133 5649, 10538, 11137, 18049, 18710, 21426, 23158, 39016, 50902, 55134 26645, 35973, 44710, 49556, 78991, 85972, 89283, 101540, 131466, 157641 7805, 41854, 155349, 165407, 190906, 215029, 235210, 245586, 271376, 296832 6154, 18488, 65788, 104520, 136463, 178863, 263429, 335829, 394854, 399254
Crossrefs
Programs
-
Mathematica
rows = 10; t = 2; T = Table[lst = {}; b = 2; While[Length[lst] < rows, p = Prime[n + Range[0, t]]; If[AllTrue[PowerMod[b, (p-1), p^2], # == 1 &], AppendTo[lst, b]]; b++]; lst, {n, rows}]; T // TableForm (* Print the A(n,k) table *) Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Sep 30 2019 *)
-
PARI
printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 2, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==3, print1(b, ", "); c++); if(c==terms, break)) array(rows, cols) = for(x=1, rows, printrow(x, cols); print("")) array(8, 10) \\ print initial 8 rows and 10 columns of array