cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319060 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..2, with k running over the positive integers; square array, read by antidiagonals, downwards.

Original entry on oeis.org

449, 557, 226, 593, 557, 1207, 649, 901, 1451, 606, 701, 1126, 2743, 1371, 3469, 757, 1207, 2774, 1451, 5938, 653, 793, 1243, 3657, 1667, 7624, 2098, 5649, 901, 1324, 4232, 2175, 11980, 4755, 10538, 26645, 1349, 1549, 4607, 2774, 12248, 5845, 11137, 35973
Offset: 1

Views

Author

Felix Fröhlich, Sep 09 2018

Keywords

Examples

			The array starts as follows:
    449,   557,    593,    649,    701,    757,    793,    901,   1349,   1457
    226,   557,    901,   1126,   1207,   1243,   1324,   1549,   2224,   2449
   1207,  1451,   2743,   2774,   3657,   4232,   4607,   5176,   6682,   7251
    606,  1371,   1451,   1667,   2175,   2774,   4244,   8201,  13543,  13670
   3469,  5938,   7624,  11980,  12248,  13543,  17554,  20809,  23344,  24675
    653,  2098,   4755,   5845,  24314,  24675,  25876,  30270,  39016,  40133
   5649, 10538,  11137,  18049,  18710,  21426,  23158,  39016,  50902,  55134
  26645, 35973,  44710,  49556,  78991,  85972,  89283, 101540, 131466, 157641
   7805, 41854, 155349, 165407, 190906, 215029, 235210, 245586, 271376, 296832
   6154, 18488,  65788, 104520, 136463, 178863, 263429, 335829, 394854, 399254
		

Crossrefs

Cf. analog for i = 0..t: A319059 (t=1), A319061 (t=3), A319062 (t=4), A319063 (t=5), A319064 (t=6), A319065 (t=7).

Programs

  • Mathematica
    rows = 10; t = 2;
    T = Table[lst = {}; b = 2;
       While[Length[lst] < rows,
         p = Prime[n + Range[0, t]];
        If[AllTrue[PowerMod[b, (p-1), p^2], # == 1 &], AppendTo[lst, b]]; b++];
       lst, {n, rows}];
    T // TableForm (* Print the A(n,k) table *)
    Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Sep 30 2019 *)
  • PARI
    printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 2, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==3, print1(b, ", "); c++); if(c==terms, break))
    array(rows, cols) = for(x=1, rows, printrow(x, cols); print(""))
    array(8, 10) \\ print initial 8 rows and 10 columns of array