A319062 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..4, with k running over the positive integers; square array, read by antidiagonals, downwards.
19601, 22049, 54568, 48149, 57968, 13543, 52057, 132857, 101399, 296449, 67357, 171793, 132576, 298117, 3414284, 84457, 223568, 296449, 380827, 4029059, 14380864, 85193, 261593, 338168, 1096112, 7040291, 14461231, 3727271, 93493, 282907, 1098599, 1761679
Offset: 1
Examples
The array starts as follows: 19601, 22049, 48149, 52057, 67357, 84457, 85193 54568, 57968, 132857, 171793, 223568, 261593, 282907 13543, 101399, 132576, 296449, 338168, 1098599, 1244324 296449, 298117, 380827, 1096112, 1761679, 2498247, 2500716 3414284, 4029059, 7040291, 10858059, 12249190, 17134811, 19603812 14380864, 14461231, 18366174, 22811283, 26295533, 33674748, 34998229 3727271, 27936608, 29998045, 31239565, 34998229, 45331852, 56029298
Crossrefs
Programs
-
Mathematica
rows = 7; t = 4; T = Table[lst = {}; b = 2; While[Length[lst] < rows, p = Prime[n + Range[0, t]]; If[AllTrue[PowerMod[b, (p - 1), p^2], # == 1 &], AppendTo[lst, b]]; b++]; lst, {n, rows}]; T // TableForm (* Print the A(n,k) table *) Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Sep 30 2019 *)
-
PARI
printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 4, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==5, print1(b, ", "); c++); if(c==terms, break)) array(rows, cols) = for(x=1, rows, printrow(x, cols); print("")) array(8, 10) \\ print initial 8 rows and 10 columns of array