A319063 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..5, with k running over the positive integers; square array, read by antidiagonals, downwards.
132857, 171793, 2006776, 261593, 3091832, 296449, 618301, 3420818, 9654224, 17134811, 700993, 3524932, 11002557, 23250274, 36763941, 997757, 4108582, 16616568, 26073470, 195603158, 34998229, 1211201, 4349699, 20512643, 26646377, 307849316, 71724464
Offset: 1
Examples
The array starts as follows: 132857, 171793, 261593, 618301, 700993, 997757, 1211201 2006776, 3091832, 3420818, 3524932, 4108582, 4349699, 4416499 296449, 9654224, 11002557, 16616568, 20512643, 20950343, 21184318 17134811, 23250274, 26073470, 26646377, 44247410, 49287925, 49975689 36763941, 195603158, 307849316, 364769263, 366974980, 395009864, 428594624 34998229, 71724464, 124024853, 279238292, 709701384, 710808570
Crossrefs
Programs
-
Mathematica
rows = 6; t = 5; T = Table[lst = {}; b = 2; While[Length[lst] < rows, p = Prime[n + Range[0, t]]; If[AllTrue[PowerMod[b, (p - 1), p^2], # == 1 &], AppendTo[lst, b]]; b++]; lst, {n, rows}]; T // TableForm (* Print the A(n,k) table *) Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Oct 01 2019 *)
-
PARI
printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 5, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==6, print1(b, ", "); c++); if(c==terms, break)) array(rows, cols) = for(x=1, rows, printrow(x, cols); print("")) array(8, 8) \\ print initial 8 rows and 8 columns of array