A319066 Number of partitions of integer partitions of n where all parts have the same length.
1, 1, 3, 5, 10, 14, 26, 35, 59, 82, 128, 176, 273, 371, 553, 768, 1119, 1544, 2235, 3084, 4410, 6111, 8649, 11982, 16901, 23383, 32780, 45396, 63365, 87622, 121946, 168407, 233605, 322269, 445723, 613922, 847131, 1164819, 1603431, 2201370, 3023660, 4144124, 5680816
Offset: 0
Keywords
Examples
The a(1) = 1 through a(5) = 14 multiset partitions: {{1}} {{2}} {{3}} {{4}} {{5}} {{1,1}} {{1,2}} {{1,3}} {{1,4}} {{1},{1}} {{1,1,1}} {{2,2}} {{2,3}} {{1},{2}} {{1,1,2}} {{1,1,3}} {{1},{1},{1}} {{1},{3}} {{1,2,2}} {{2},{2}} {{1},{4}} {{1,1,1,1}} {{2},{3}} {{1,1},{1,1}} {{1,1,1,2}} {{1},{1},{2}} {{1,1,1,1,1}} {{1},{1},{1},{1}} {{1,1},{1,2}} {{1},{1},{3}} {{1},{2},{2}} {{1},{1},{1},{2}} {{1},{1},{1},{1},{1}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[Join@@mps/@IntegerPartitions[n],SameQ@@Length/@#&]],{n,8}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(p=1/prod(k=1, n, 1 - x^k*y + O(x*x^n))); concat([1], sum(k=1, n, EulerT(Vec(polcoef(p, k, y), -n))))} \\ Andrew Howroyd, Oct 25 2018
Extensions
Terms a(11) and beyond from Andrew Howroyd, Oct 25 2018