cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319087 a(n) = Sum_{k=1..n} k^2*phi(k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 5, 23, 55, 155, 227, 521, 777, 1263, 1663, 2873, 3449, 5477, 6653, 8453, 10501, 15125, 17069, 23567, 26767, 32059, 36899, 48537, 53145, 65645, 73757, 86879, 96287, 119835, 127035, 155865, 172249, 194029, 212525, 241925, 257477, 306761, 332753, 369257
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Comments

Comment from N. J. A. Sloane, Mar 22 2020: (Start)
Theorem: Sum_{ 1<=i<=n, 1<=j<=n, gcd(i,j)=1 } i*j = a(n).
Proof: From the Apostol reference we know that:
Sum_{ 1<=i<=n, gcd(i,n)=1 } i = n*phi(n)/2 (see A023896).
We use induction on n. The result is true for n=1.
Then a(n) - a(n-1) = 2*Sum_{ i=1..n-1, gcd(i,n)=1 } n*i = n^2*phi(n). QED (End)

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 16, the function phi_1(n).

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^2*EulerPhi[k], {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^2*eulerphi(k)); \\ Michel Marcus, Sep 12 2018

Formula

a(n) ~ 3*n^4 / (2*Pi^2).