A053191
a(n) = n^2 * phi(n).
Original entry on oeis.org
1, 4, 18, 32, 100, 72, 294, 256, 486, 400, 1210, 576, 2028, 1176, 1800, 2048, 4624, 1944, 6498, 3200, 5292, 4840, 11638, 4608, 12500, 8112, 13122, 9408, 23548, 7200, 28830, 16384, 21780, 18496, 29400, 15552, 49284, 25992, 36504, 25600, 67240
Offset: 1
n=5: n^3 = 125, EulerPhi(125) = 125 - 25 = 100.
-
[ n^2*EulerPhi(n) : n in [1..100] ]; // Vincenzo Librandi, Apr 21 2011
-
with(numtheory):a:=n->phi(n^3): seq(a(n), n=1..41); # Zerinvary Lajos, Oct 07 2007
-
Table[cnt=0; Do[m={{a, b}, {b, c}}; If[Det[m, Modulus->n]>0 && MatrixQ[Inverse[m, Modulus->n]], cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}]; cnt, {n, 2, 50}] (* T. D. Noe, Jan 13 2006 *)
Table[n^2*EulerPhi[n],{n,1,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 10 2009 *)
-
a(n) = n^2*eulerphi(n); \\ Michel Marcus, Oct 31 2017
-
[n^2*euler_phi(n) for n in range(1, 42)] # Zerinvary Lajos, Jun 06 2009
A011755
a(n) = Sum_{k=1..n} k*phi(k).
Original entry on oeis.org
1, 3, 9, 17, 37, 49, 91, 123, 177, 217, 327, 375, 531, 615, 735, 863, 1135, 1243, 1585, 1745, 1997, 2217, 2723, 2915, 3415, 3727, 4213, 4549, 5361, 5601, 6531, 7043, 7703, 8247, 9087, 9519, 10851, 11535, 12471, 13111, 14751, 15255, 17061, 17941, 19021, 20033
Offset: 1
-
Accumulate[Table[k*EulerPhi[k], {k, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
-
a(n) = sum(k=1, n, k*eulerphi(k)); \\ Michel Marcus, Feb 13 2017
-
from sympy import totient
def A011755(n): return sum(k*totient(k) for k in range(1,n+1)) # Chai Wah Wu, Feb 21 2023
A333292
Triangle read by rows: T(m,n) = Sum_{ 1 <= i <= m, 1 <= j <= n, gcd(i,j)=1 } i*j, for 1 <= n <= m.
Original entry on oeis.org
1, 3, 5, 6, 14, 23, 10, 18, 39, 55, 15, 33, 69, 105, 155, 21, 39, 75, 111, 191, 227, 28, 60, 117, 181, 296, 374, 521, 36, 68, 149, 213, 368, 446, 649, 777, 45, 95, 176, 276, 476, 554, 820, 1020, 1263, 55, 105, 216, 316, 516, 594, 930, 1130, 1463, 1663, 66, 138, 282, 426, 681, 825, 1238, 1526, 1958, 2268, 2873
Offset: 1
Triangle begins:
1,
3, 5,
6, 14, 23,
10, 18, 39, 55,
15, 33, 69, 105, 155,
21, 39, 75, 111, 191, 227,
28, 60, 117, 181, 296, 374, 521,
36, 68, 149, 213, 368, 446, 649, 777,
45, 95, 176, 276, 476, 554, 820, 1020, 1263,
55, 105, 216, 316, 516, 594, 930, 1130, 1463, 1663,
...
-
T:= (m, n)-> add(add(`if`(igcd(i, j)=1, i*j, 0), j=1..n), i=1..m):
seq(seq(T(m, n), n=1..m), m=1..12); # Alois P. Heinz, Mar 23 2020
A333293
a(n) = Sum_{k=1..n-1} k^2*phi(k) + n^2*phi(n)/2, where phi = A000010.
Original entry on oeis.org
3, 14, 39, 105, 191, 374, 649, 1020, 1463, 2268, 3161, 4463, 6065, 7553, 9477, 12813, 16097, 20318, 25167, 29413, 34479, 42718, 50841, 59395, 69701, 80318, 91583, 108061, 123435, 141450, 164057, 183139, 203277, 227225, 249701, 282119, 319757, 351005, 382057, 428477, 472681, 522094, 580283, 623943, 671519
Offset: 2
-
P:= [seq(k^2*numtheory:-phi(k),k=1..100)]:
T:= ListTools:-PartialSums(P):
seq(T[i-1]+P[i]/2,i=2..100); # Robert Israel, Mar 24 2020
-
a(n) = sum(k=1, n-1, k^2*eulerphi(k)) + n^2*eulerphi(n)/2; \\ Michel Marcus, Mar 23 2020
A333291
a(n) = Sum_{i=1..n, gcd(i,n)=1} i*phi(i) where phi is Euler's totient function A000010.
Original entry on oeis.org
1, 1, 3, 7, 17, 21, 49, 69, 105, 103, 217, 173, 375, 347, 435, 509, 863, 601, 1243, 983, 1271, 1265, 2217, 1449, 2575, 2225, 2935, 2573, 4549, 2241, 5601, 4609, 5195, 4997, 6453, 4531, 9519, 7099, 8457, 6897, 13111, 6621, 15255, 11053, 11691, 12397, 20033, 11471, 20905, 14563, 19307, 17663, 28901, 16285, 26119
Offset: 1
-
a:= n-> add(`if`(igcd(i, n)=1, i*numtheory[phi](i), 0), i=1..n):
seq(a(n), n=1..55); # Alois P. Heinz, Mar 22 2020
-
a[n_] := Sum[If[CoprimeQ[i, n], i * EulerPhi[i], 0], {i, 1, n}]; Array[a, 100] (* Amiram Eldar, Dec 01 2024 *)
-
a(n) = sum(i=1, n, if (gcd(n, i) == 1, i*eulerphi(i))); \\ Michel Marcus, Mar 23 2020
A333297
a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} i.
Original entry on oeis.org
1, 4, 13, 25, 55, 73, 136, 184, 265, 325, 490, 562, 796, 922, 1102, 1294, 1702, 1864, 2377, 2617, 2995, 3325, 4084, 4372, 5122, 5590, 6319, 6823, 8041, 8401, 9796, 10564, 11554, 12370, 13630, 14278, 16276, 17302, 18706, 19666, 22126, 22882, 25591, 26911, 28531, 30049, 33292, 34444, 37531, 39031
Offset: 1
-
Vi := proc(m,n) local a,i,j; a:=0;
for i from 1 to m do for j from 1 to n do
if igcd(i,j)=1 then a:=a+i; fi; od: od: a; end;
# the diagonal :
[seq(Vi(n,n),n=1..50)];
# second Maple program:
a:= proc(n) option remember; `if`(n<2, n,
a(n-1) + 3*n*numtheory[phi](n)/2)
end:
seq(a(n), n=1..50); # Alois P. Heinz, Mar 25 2020
-
a[n_] := a[n] = If[n < 2, n, a[n - 1] + 3 n EulerPhi[n]/2];
Array[a, 50] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
-
a(n)={my(s=0);for(i=1,n,for(j=1,n,if(gcd(i,j)==1,s+=i)));s};
for(k=1,45,print1(a(k),", ")) \\ Hugo Pfoertner, Mar 25 2020
A344526
a(n) = Sum_{k=1..n} k^3 * phi(k).
Original entry on oeis.org
1, 9, 63, 191, 691, 1123, 3181, 5229, 9603, 13603, 26913, 33825, 60189, 76653, 103653, 136421, 215029, 250021, 373483, 437483, 548615, 655095, 922769, 1033361, 1345861, 1556773, 1911067, 2174491, 2857383, 3073383, 3967113, 4491401, 5210141, 5839005, 6868005, 7427877, 9251385
Offset: 1
-
a[n_] := Sum[k^3 * EulerPhi[k], {k, 1, n}]; Array[a, 40] (* Amiram Eldar, May 22 2021 *)
Accumulate[Table[k^3*EulerPhi[k], {k, 1, 40}]] (* Vaclav Kotesovec, May 22 2021 *)
-
a(n) = sum(k=1, n, k^3*eulerphi(k));
Showing 1-7 of 7 results.
Comments