cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319127 Crossing number of the complete bipartite graph K_{6,n}.

Original entry on oeis.org

0, 0, 6, 12, 24, 36, 54, 72, 96, 120, 150, 180, 216, 252, 294, 336, 384, 432, 486, 540, 600, 660, 726, 792, 864, 936, 1014, 1092, 1176, 1260, 1350, 1440, 1536, 1632, 1734, 1836, 1944, 2052, 2166, 2280, 2400, 2520, 2646, 2772, 2904, 3036, 3174, 3312, 3456, 3600, 3750
Offset: 1

Views

Author

Eric W. Weisstein, Sep 11 2018

Keywords

Programs

  • Mathematica
    Table[6 Floor[n/2] Floor[(n - 1)/2], {n, 60}]
    Table[3/4 (2 n (n - 2) + 1 - (-1)^n), {n, 60}]
    LinearRecurrence[{2, 0, -2, 1}, {0, 0, 6, 12}, 60]
    CoefficientList[Series[-6 x^2/((-1 + x)^3 (1 + x)), {x, 0, 60}], x]
  • PARI
    a(n)=n--^2\4*6 \\ Charles R Greathouse IV, Jul 13 2021

Formula

a(n) = 6*floor(n/2)*floor((n-1)/2).
G.f.: -6*x^3/((-1 + x)^3*(1 + x)).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = (3/4)*(2*n*(n - 2) + 1 - (-1)^n).
a(n) = 6*A002620(n-1). - R. J. Mathar, Feb 12 2021