cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248434 Number of length three 0..n arrays with the sum of two elements equal to twice the third.

Original entry on oeis.org

2, 9, 16, 29, 42, 61, 80, 105, 130, 161, 192, 229, 266, 309, 352, 401, 450, 505, 560, 621, 682, 749, 816, 889, 962, 1041, 1120, 1205, 1290, 1381, 1472, 1569, 1666, 1769, 1872, 1981, 2090, 2205, 2320, 2441, 2562, 2689, 2816, 2949, 3082, 3221, 3360, 3505, 3650
Offset: 1

Views

Author

R. H. Hardin, Oct 06 2014

Keywords

Comments

Number of length three 0..n vectors that contain their arithmetic mean. - Hywel Normington, Aug 15 2020

Examples

			Some solutions for n=6:
..2....3....6....1....3....4....3....1....6....2....4....0....4....5....4....3
..6....1....2....0....2....3....3....2....5....3....0....1....3....6....4....5
..4....5....4....2....1....5....3....3....4....1....2....2....2....4....4....4
		

Crossrefs

Row 1 of A248433.
Cf. A168328, A319127, A319127. First differences A168301.

Programs

  • PARI
    a(n) = {my(res = 2); if(n % 2 == 0, res+=(1 + 6*floor(n/2))); n = (n-1)>>1; res+=6*n^2 + 8*n; res} \\ David A. Corneth, Aug 26 2020
    
  • PARI
    first(n) = {my(res = vector(n), inc = 7); res[1] = 2; for(i = 2, n, res[i] = res[i-1] + inc; inc += 6 * (i%2 == 1)); res} \\ David A. Corneth, Aug 26 2020

Formula

Empirical: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4).
Empirical for n mod 2 = 0: a(n) = (3/2)*n^2 + n + 1.
Empirical for n mod 2 = 1: a(n) = (3/2)*n^2 + n - (1/2).
From Hywel Normington, Aug 21 2020: (Start)
a(n) = a(n-1) + 1 + 6*floor(n/2)
a(n) = A319127(n+1) + n + 1 = 6*floor((n+1)/2)*floor(n/2) + n + 1.
(End)
From Colin Barker, Aug 28 2020: (Start)
G.f.: x*(2 + 5*x - 2*x^2 + x^3) / ((1 - x)^3*(1 + x)).
a(n) = (1 + 3*(-1)^n + 4*n + 6*n^2) / 4 for n>0.
(End)

Extensions

Name simplified by Andrew Howroyd, Aug 14 2020

A330082 a(n) = 5*A064038(n+1).

Original entry on oeis.org

0, 5, 15, 15, 25, 75, 105, 70, 90, 225, 275, 165, 195, 455, 525, 300, 340, 765, 855, 475, 525, 1155, 1265, 690, 750, 1625, 1755, 945, 1015, 2175, 2325, 1240, 1320, 2805, 2975, 1575, 1665, 3515, 3705, 1950, 2050, 4305, 4515, 2365, 2475, 5175, 5405, 2820, 2940
Offset: 0

Views

Author

Paul Curtz, Dec 01 2019

Keywords

Comments

Main column of a pentagonal spiral for A026741:
(25)
49 (15) 31
24 29 (15) 8 16
47 14 7 ( 5) 3 17 33
23 27 13 2 ( 0) 1 7 9 17
45 13 6 3 1 4 19 35
22 25 11 5 9 10 18
43 12 23 11 21 37
21 41 20 39 19
a(n) = 5 * A064038(n+1) from a pentagonal spiral.
Compare to A319127 = 6 * A002620 in the hexagonal spiral:
22 23 23 22 (24)
20 12 13 13 (12) 25
21 10 5 4 ( 6) 14 25
21 11 5 1 ( 0) 7 15 24
20 11 4 1 ( 0) 2 7 15 26
18 10 2 3 3 6 14 27
19 8 9 9 8 16 27
19 18 16 17 17 26
30 28 29 29 28

Crossrefs

Programs

  • Mathematica
    A330082[n_]:=5Numerator[n(n+1)/4];Array[A330082,100,0] (* Paolo Xausa, Dec 04 2023 *)
  • PARI
    concat(0, Vec(5*x*(1 + 4*x^3 + x^6) / ((1 - x)^3*(1 + x^2)^3) + O(x^50))) \\ Colin Barker, Dec 08 2019

Formula

a(n) = A026741(A028895(n)).
From Colin Barker, Dec 08 2019: (Start)
G.f.: 5*x*(1 + 4*x^3 + x^6) / ((1 - x)^3*(1 + x^2)^3).
a(n) = 3*a(n-1) - 6*a(n-2) + 10*a(n-3) - 12*a(n-4) + 12*a(n-5) - 10*a(n-6) + 6*a(n-7) - 3*a(n-8) + a(n-9) for n>8.
a(n) = (-5/16 + (5*i)/16)*(((-3-3*i) + (-i)^n + i^(1+n))*n*(1+n)) where i=sqrt(-1).
(End)

Extensions

More terms from Colin Barker, Dec 22 2019
Name corrected by Paolo Xausa, Dec 04 2023

A345735 A prime-generating quasipolynomial: a(n) = 6*floor(n^2/4) + 17.

Original entry on oeis.org

17, 17, 23, 29, 41, 53, 71, 89, 113, 137, 167, 197, 233, 269, 311, 353, 401, 449, 503, 557, 617, 677, 743, 809, 881, 953, 1031, 1109, 1193, 1277, 1367, 1457, 1553, 1649, 1751, 1853, 1961, 2069, 2183, 2297, 2417, 2537, 2663, 2789, 2921, 3053, 3191, 3329, 3473, 3617
Offset: 0

Views

Author

Keywords

Comments

Fontebasso only claims that the terms are prime from 0 to 22, but in fact a(23)..a(30) are all prime as well. The first composite term is a(31) = 1457 = 31*47.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{17,17,23,29},50] (* Harvey P. Dale, Jul 17 2025 *)
  • PARI
    a(n)=n^2\4*6+17

Formula

a(n) = A319127(n+1) + 17 = 6*A002620(n) + 17. - Omar E. Pol, Jul 12 2021
G.f.: (17*x^3-11*x^2-17*x+17)/((x+1)*(1-x)^3). - Alois P. Heinz, Jul 12 2021
E.g.f.: ((34 + 3*x + 3*x^2)*cosh(x) + (31 + 3*x + 3*x^2)*sinh(x))/2. - Stefano Spezia, Jul 13 2021
Showing 1-3 of 3 results.