A251428 T(n,k)=Number of length n+2 0..k arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.
2, 9, 12, 16, 41, 12, 29, 116, 97, 40, 42, 237, 380, 341, 56, 61, 432, 1113, 1888, 1003, 144, 80, 725, 2532, 6589, 7458, 3129, 240, 105, 1128, 5097, 18952, 34893, 31980, 9439, 544, 130, 1641, 9120, 44465, 122452, 183341, 127566, 28717, 992, 161, 2316, 15449
Offset: 1
Examples
Some solutions for n=5 k=4 ..3....3....1....0....3....1....4....3....3....1....3....1....0....4....0....3 ..2....1....4....4....1....0....4....0....0....0....1....0....2....2....1....2 ..3....2....1....4....1....0....1....3....1....4....2....3....4....1....3....3 ..0....3....0....0....0....4....2....2....3....3....1....1....0....3....1....3 ..4....1....3....1....3....3....4....3....3....0....3....3....2....4....3....1 ..0....3....4....3....0....1....4....4....0....3....2....4....0....1....1....3 ..3....3....0....0....3....1....1....4....0....0....2....4....2....2....4....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..202
Crossrefs
Row 1 is A248434
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2) -4*a(n-3)
k=2: [order 14]
k=3: [order 29]
Empirical for row n:
n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a polynomial of degree 2 plus a quasipolynomial of degree 0 with period 2
n=2: a(n) = a(n-1) +2*a(n-3) -a(n-4) -a(n-5) -a(n-6) -a(n-7) +2*a(n-8) +a(n-10) -a(n-11); also a polynomial of degree 3 plus a quasipolynomial of degree 1 with period 12
n=3: [order 38]
Comments