A360809 Decimal expansion of the area under the curve of the reciprocal of the Luschny factorial function from zero to infinity.
2, 5, 8, 6, 7, 0, 5, 0, 5, 9, 7, 8, 6, 8, 0, 8, 2, 2, 7, 7, 7, 8, 1, 0, 6, 8, 7, 2, 9, 4, 6, 9, 6, 0, 2, 1, 3, 5, 7, 3, 0, 9, 6, 2, 7, 4, 2, 4, 8, 9, 3, 6, 1, 2, 4, 4, 6, 7, 0, 8, 2, 4, 2, 2, 5, 8, 5, 9, 4, 0, 4, 5, 5, 6, 0, 6, 6, 4, 3, 4, 2, 6, 4, 2, 8, 8, 2, 7, 7, 7, 5, 6, 7, 5, 3, 9, 0, 8, 8, 7, 6, 4, 4, 6, 9, 9, 8, 1
Offset: 1
Examples
2.58670505978680822777810687294696021357309627424893612446708242258594...
Links
- Peter Luschny, Is the Gamma-function misdefined? Or: Hadamard vs Euler - Who found the better Gamma function?.
- Hywel Normington, Python Code, 2023.
- Hywel Normington, Reciprocal Gamma Integrals, 2023.
Programs
-
Maple
L := proc(x) local G, S, y; if x = 0 then return 0.5 fi; y := x * 0.5; if is(x < 0) then y := -y fi; G := y * (Psi(y + 0.5) - Psi(y)) - 0.5; if is(x < 0) then return G/(-x)! fi; y := Pi * x; S := sin(y) / y; (1 - S * G) * x! end: RL := x -> 1 / L(x): IntRL := n -> evalf[n](Int(RL, 0..n, method = Gquad)): IntRL(40); # _Peter Luschny, Feb 22 2023
-
Mathematica
RealDigits[NIntegrate[1 / (Gamma[x+1] * (1 - (x/2 * (PolyGamma[0, (x+1)/2] - PolyGamma[0, x/2]) - 1/2) * Sin[Pi*x]/(Pi*x))), {x, 0, Infinity}, WorkingPrecision -> 110, MaxRecursion -> Infinity]][[1]] (* Vaclav Kotesovec, Feb 22 2023 *)
-
PARI
default(realprecision, 500); intnum(x=0, [[1], 1], 1 / (gamma(x+1) * (1 - (x/2 * (psi((x+1)/2) - psi(x/2)) - 1/2) * sin(Pi*x)/(Pi*x)))) \\ (default(realprecision, 200) is enough for 59 valid digits, \p 500 for 102 valid digits, \p 1000 for 148 valid digits). - Vaclav Kotesovec, Feb 22 2023
Formula
L(x) = Gamma(x+1)P(x), where P(x) = 1 - g(x)*sin(Pi*x)/(Pi*x) and g(x) = (x/2)*(Psi((x+1)/2) - Psi(x/2)) - 1/2.
Equals Integral_{0..oo} 1/L(x) dx.
Extensions
More digits from Vaclav Kotesovec, Feb 22 2023
Comments