cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Hywel Normington

Hywel Normington's wiki page.

Hywel Normington has authored 6 sequences.

A360809 Decimal expansion of the area under the curve of the reciprocal of the Luschny factorial function from zero to infinity.

Original entry on oeis.org

2, 5, 8, 6, 7, 0, 5, 0, 5, 9, 7, 8, 6, 8, 0, 8, 2, 2, 7, 7, 7, 8, 1, 0, 6, 8, 7, 2, 9, 4, 6, 9, 6, 0, 2, 1, 3, 5, 7, 3, 0, 9, 6, 2, 7, 4, 2, 4, 8, 9, 3, 6, 1, 2, 4, 4, 6, 7, 0, 8, 2, 4, 2, 2, 5, 8, 5, 9, 4, 0, 4, 5, 5, 6, 0, 6, 6, 4, 3, 4, 2, 6, 4, 2, 8, 8, 2, 7, 7, 7, 5, 6, 7, 5, 3, 9, 0, 8, 8, 7, 6, 4, 4, 6, 9, 9, 8, 1
Offset: 1

Author

Hywel Normington, Feb 21 2023

Keywords

Examples

			2.58670505978680822777810687294696021357309627424893612446708242258594...
		

Crossrefs

Programs

  • Maple
    L := proc(x) local G, S, y; if x = 0 then return 0.5 fi; y := x * 0.5; if is(x < 0) then y := -y fi; G := y * (Psi(y + 0.5) - Psi(y)) - 0.5; if is(x < 0) then return G/(-x)! fi; y := Pi * x; S := sin(y) / y; (1 - S * G) * x! end: RL := x -> 1 / L(x):
    IntRL := n -> evalf[n](Int(RL, 0..n, method = Gquad)): IntRL(40); # _Peter Luschny, Feb 22 2023
  • Mathematica
    RealDigits[NIntegrate[1 / (Gamma[x+1] * (1 - (x/2 * (PolyGamma[0, (x+1)/2] - PolyGamma[0, x/2]) - 1/2) * Sin[Pi*x]/(Pi*x))), {x, 0, Infinity}, WorkingPrecision -> 110, MaxRecursion -> Infinity]][[1]] (* Vaclav Kotesovec, Feb 22 2023 *)
  • PARI
    default(realprecision, 500); intnum(x=0, [[1], 1], 1 / (gamma(x+1) * (1 - (x/2 * (psi((x+1)/2) - psi(x/2)) - 1/2) * sin(Pi*x)/(Pi*x)))) \\ (default(realprecision, 200) is enough for 59 valid digits, \p 500 for 102 valid digits, \p 1000 for 148 valid digits). - Vaclav Kotesovec, Feb 22 2023

Formula

L(x) = Gamma(x+1)P(x), where P(x) = 1 - g(x)*sin(Pi*x)/(Pi*x) and g(x) = (x/2)*(Psi((x+1)/2) - Psi(x/2)) - 1/2.
Equals Integral_{0..oo} 1/L(x) dx.

Extensions

More digits from Vaclav Kotesovec, Feb 22 2023

A360375 Decimal expansion of the area under the curve of the reciprocal of the Hadamard gamma function from zero to infinity.

Original entry on oeis.org

3, 3, 6, 8, 2, 0, 2, 9, 2, 9, 6, 0, 7, 0, 2, 2, 7, 9, 2, 1, 6, 2, 2, 0, 5, 9, 6, 2, 2, 0, 9, 3, 6, 2, 5, 4, 8, 4, 7, 6, 1, 0, 6, 4, 8, 8, 7, 6, 1, 0, 3, 1, 2, 1, 9, 4, 7, 0, 2, 8, 7, 5, 2, 0, 2, 6, 1, 6, 1, 6, 0, 5, 1, 3, 3, 6, 1, 3, 1, 4, 4, 2, 0, 3, 0, 2, 5, 3, 9, 3, 9, 8, 4, 1, 2, 4, 4, 3, 8, 1, 3, 8, 1, 7, 2
Offset: 1

Author

Hywel Normington, Feb 04 2023

Keywords

Comments

Close to 3 + (1/e) = 3.367879...
Sum_{n>=0} 1/H(n) = 1/log(2) + e - 1 = 3.1609768... This integral may have a similar representation to the Fransen-Robinson constant.

Examples

			3.368202929607022792162205962209362548476...
		

References

  • J. Hadamard, (1894), Oeuvre de Jacques Hadamard, Centre National de la Recherche Scientifiques, Paris, 1968.

Crossrefs

Cf. A058655.

Programs

  • Maple
    H := x -> 1/((sin(x*Pi)*(Psi(x/2) - Psi(1/2 + x/2)) + 2*Pi) * GAMMA(x)):
    evalf[80](2*Pi*Int(H, 0..60, method = Gquad)); # _Peter Luschny, Feb 20 2023
  • Mathematica
    RealDigits[NIntegrate[2*Gamma[1-x]/(PolyGamma[0, 1 - x/2] - PolyGamma[0, 1/2 - x/2]), {x, 0, Infinity}, WorkingPrecision -> 105, MaxRecursion -> Infinity]][[1]] (* Vaclav Kotesovec, Feb 19 2023 *)
  • PARI
    default(realprecision, 200); intnum(x=0,[[1], 1], 2*gamma(1-x) / (psi(1-x/2) - psi(1/2-x/2))) \\ (default(realprecision, 200) is enough for 40 valid digits, \p 500 for 71 valid digits, \p 1000 for 110 valid digits, \p 2000 for 171 valid digits). - Vaclav Kotesovec, Feb 19 2023

Formula

Hadamard function definitions:
H(x) = (1/Gamma(1-x)) * (d/dx) log(Gamma(1/2 - x/2)/Gamma(1-x/2)).
H(x) = Gamma(x)*(1 + (sin(Pi*x)/(2*Pi)) * (Psi(x/2) - Psi((x+1)/2))).
Equals Integral_{0..oo} 1/H(x) dx.

Extensions

More digits from Vaclav Kotesovec, Feb 19 2023

A337559 Number of length three 1..n vectors that contain their harmonic mean.

Original entry on oeis.org

1, 2, 3, 4, 5, 18, 19, 20, 21, 22, 23, 36, 37, 38, 51, 52, 53, 66, 67, 80, 81, 82, 83, 96, 97, 98, 99, 112, 113, 138, 139, 140, 141, 142, 155, 168, 169, 170, 171, 184, 185, 210, 211, 212, 237, 238, 239, 252, 253, 254, 255, 256, 257, 270, 271, 284, 285, 286, 287, 324, 325, 326, 339
Offset: 1

Author

Hywel Normington, Aug 31 2020

Keywords

Examples

			For n = 1, the only solution is (1,1,1).
For n = 6, the a(6) = 18 solutions are (k,k,k) for k=1,..,6, the 6 permutations of (2,3,6) and the 6 permutations of (3,4,6).
For n = 40, the a(40)-a(39) = 13 new solutions are (40,40,40), the 6 permutations of (10,16,40) and the 6 permutations of (24,30,40).
		

Crossrefs

Formula

Empirical: If A174903(n) = 0, a(n) = a(n-1) + 1.
a(n)-a(n-1) = 1 (mod 6).

A337560 Number of length four 1..n vectors that contain their harmonic mean.

Original entry on oeis.org

1, 2, 3, 28, 29, 78, 79, 104, 105, 154, 155, 252, 253, 254, 351, 376, 377, 426, 427, 620, 717, 718, 719, 912, 913, 914, 915, 1084, 1085, 1374, 1375, 1400, 1425, 1426, 1619, 1812, 1813, 1814, 1839, 2128, 2129, 2442, 2443, 2564, 2829, 2830, 2831, 3192, 3193
Offset: 1

Author

Hywel Normington, Aug 31 2020

Keywords

Examples

			For n = 1, the a(1) = 1 solution is (1,1,1,1).
For n = 4, the a(4) = 28 solutions are (k,k,k,k) for k=1,2,3,4, the 12 permutations of (1,2,4,4) and the 12 permutations of (2,3,4,4).
For n = 40, the a(40) - a(39) = 289 new solutions are:
  the 24 permutations of (4, 8, 10, 40),
  the 12 permutations of (4, 10, 40, 40),
  the 12 permutations of (5, 12, 40, 40),
  the 24 permutations of (8, 10, 12, 40),
  the 24 permutations of (8, 15, 20, 40),
  the 12 permutations of (10, 16, 16, 40),
  the 24 permutations of (10, 18, 24, 40),
  the 12 permutations of (10, 20, 40, 40),
  the 24 permutations of (12, 20, 24, 40),
  the 24 permutations of (14, 24, 35, 40),
  the 24 permutations of (15, 24, 30, 40),
  the 12 permutations of (16, 16, 20, 40),
  the 12 permutations of (20, 20, 24, 40),
  the 12 permutations of (20, 30, 40, 40),
  the 12 permutations of (24, 30, 30, 40),
  the 12 permutations of (28, 35, 40, 40),
  the 12 permutations of (30, 36, 40, 40),
  and (40, 40, 40, 40).
		

Crossrefs

Formula

a(n) - a(n-1) = 1 (mod 12).

Extensions

a(43)-a(49) from Alois P. Heinz, Feb 04 2023

A337110 Number of length three 1..n vectors that contain their geometric mean.

Original entry on oeis.org

1, 2, 3, 10, 11, 12, 13, 20, 33, 34, 35, 42, 43, 44, 45, 64, 65, 78, 79, 86, 87, 88, 89, 96, 121, 122, 135, 142, 143, 144, 145, 164, 165, 166, 167, 198, 199, 200, 201, 208, 209, 210, 211, 218, 231, 232, 233, 252, 289, 314, 315, 322, 323, 336, 337, 344, 345, 346
Offset: 1

Author

Hywel Normington, Aug 16 2020

Keywords

Comments

From David A. Corneth, Aug 26 2020: (Start)
If x^2 == 0 (mod n) has only 1 solution then a(n) = a(n-1) + 1. Proof:
Let (a, b, n) be such a tuple. Let without loss of generality b be the geometric mean of the tuple. Then a*b*n = b^3 and as b is not 0 we have b^2 = a*n. So then b^2 == 0 (mod n). If b^2 == 0 (mod n) has only 1 solution then b = n. This gives the tuple (n, n, n) which has 1 permutation. So giving a(n) = a(n-1) + 1. (End)

Examples

			For n = 2, the a(2) = 2 solutions are: (1,1,1) and (2,2,2).
For n = 4, the a(4) = 10 solutions are: (1,1,1),(2,2,2),(3,3,3),(4,4,4) and the 6 permutations of (1,2,4).
		

Programs

  • PARI
    first(n) = {my(s = 0, res = vector(n)); for(i = 1, n, s+=b(i); res[i] = s ); res }
    b(n) = { my(s = factorback(factor(n)[, 1]), res = 1); for(i = 1, n \ s - 1, c = (s*i)^2/n; if(denominator(c) == 1 && c <= n, res+=6; ) ); res } \\ David A. Corneth, Aug 26 2020

Formula

a(n) = a(n-1) + 1 + 6*A057918(n).

A337111 Number of length four 1..n vectors that contain their geometric mean.

Original entry on oeis.org

1, 2, 3, 16, 17, 18, 19, 56, 105, 106, 107, 144, 145, 146, 147, 208, 209, 306, 307, 320, 321, 322, 323, 432, 529, 530, 723, 736, 737, 738, 739, 968, 969, 970, 971, 1176, 1177, 1178, 1179, 1288, 1289, 1290, 1291, 1304, 1401, 1402, 1403, 1608, 1777, 2018, 2019, 2032
Offset: 1

Author

Hywel Normington, Aug 16 2020

Keywords

Comments

From David A. Corneth, Aug 27 2020: (Start)
Let (a, b, g, n) be a tuple where g is the geometric mean of a*b*g*n and a, b, g <= n. Then there are two cases: g < n and g = n.
If g = n then (a, b, g, n) = (n, n, n, n) adding 1 to the number of permutations.
If g < n then a*b = g^4 / (g*n) = g^3 / n. Furthermore let s be the squarefree part of n (Cf. A007947). Then s | g and so candidates for g are (s*i) where 1 <= i < floor(n/s), depending on whether g^3 / n = (s*i)^3 / n is an integer.
It follows that for suitable values of i, (a, b) are a pair of divisors of (s*i)^3 / n where a*b = (s*i)^3 / n and max(a, b) <= n. (End)
Bounds: n + 12*(floor(n/4) + 2*floor(n/8) + 4*floor(n/9) + 2*floor(n/12) + 2*floor(n/16) + 4*floor(n/18)) <= a(n) <= n^4 - 14*(n-1). - Hywel Normington, Jan 25 2021

Examples

			For n = 2 the a(2) = 2 solutions are: (1,1,1,1) and (2,2,2,2).
For n = 4 the a(4) = 16 solutions are:
  (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3), (4, 4, 4, 4),
  and the 12 permutations of (1, 2, 2, 4).
For n = 40, the a(40)-a(39) = 109 new solutions are:
  (40,40,40,40),
  the 24 permutations of (1, 10, 25, 40),
  the 12 permutations of (5, 5, 10, 40),
  the 12 permutations of (5, 20, 40, 40),
  the 24 permutations of (8, 20, 25, 40),
  the 12 permutations of (10, 20, 20, 40),
  and the 24 permutations of (25, 27, 30, 40).
		

Crossrefs

Programs

  • PARI
    first(n) = { my(res = vector(n)); s = 0; for(i = 1, n, s += b(i);  res[i] = s; ); res }
    b(n) = {my(resa = 1); my(s = factorback(factor(n)[, 1])); for(i = 1, n \ s - 1, s4 = (s*i)^3; if(s4 % n == 0, c = tuples((s*i)^3/n, s*i, n); for(i = 1, #c, resa+=qperms(c[i]) ) ) ); resa }
    qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1,if(v[i]==v[i+1],t++,r*=binomial(i,t+1);t=0));r*=binomial(#v,t+1)}
    tuples(n, s, u) = {my(res = List(), u4n, d, i); d = divisors(n); i = (#d + 1) \ 2; while(i > 0 && d[#d - i + 1] <= u, c = vecsort([d[i], d[#d - i + 1], s, u]); listput(res, c); i--); res} \\ David A. Corneth, Aug 28 2020

Formula

Empirical: if A000189(n) = 1 then a(n) = a(n-1) + 1.
From David A. Corneth, Aug 25 2020: (Start)
The above holds. That is: if x^3 == 0 (mod n) has only one solution then a(n) = a(n-1) + 1. Proof:
Let (a, b, c, n) be such a tuple. Let without loss of generality c be the geometric mean of the tuple. Then a*b*c*n = c^4 and as c is not 0 we have c^3 = a*b*n. So then c^3 == 0 (mod n). If c^3 == 0 (mod n) has only 1 solution then c = n. This gives the tuple (n, n, n, n) which has 1 permutation. So giving a(n) = a(n-1) + 1. (End)
a(n) - a(n-1) == 1 (mod 12). - Hywel Normington, Sep 28 2020