A319140 Total number of binary digits in all partitions of n into distinct parts.
1, 2, 5, 6, 11, 17, 23, 30, 44, 60, 76, 102, 128, 166, 214, 264, 327, 413, 502, 618, 759, 917, 1105, 1335, 1598, 1907, 2279, 2702, 3191, 3776, 4436, 5198, 6101, 7113, 8292, 9653, 11188, 12951, 14984, 17277, 19889, 22881, 26248, 30073, 34439, 39320, 44850
Offset: 1
Examples
For n = 4 there are 2 partitions into distinct parts in binary they are: 100, 11+1, for a total of 6 binary parts.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5000
Programs
-
Maple
h:= proc(n) option remember; 1+ilog2(n) end: b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(n>i*(i+1)/2, 0, b(n, i-1)+(p-> p+h(i) *[0, p[1]])(b(n-i, min(n-i, i-1))))) end: a:= n-> b(n$2)[2]: seq(a(n), n=1..60); # Alois P. Heinz, Sep 27 2018
-
Mathematica
h[n_] := h[n] = 1+Log[2, n] // Floor; b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[n > i*(i+1)/2, 0, b[n, i-1] + Function[p, p + h[i]*{0, p[[1]]}][b[n-i, Min[n-i, i-1]]]]]; a[n_] := b[n, n][[2]]; a /@ Range[1; 60] (* Jean-François Alcover, Sep 28 2019, after Alois P. Heinz *)
-
PARI
seq(n)={[subst(deriv(p,y), y, 1) | p<-Vec(-1 + prod(k=1, n, 1 + x^k*y^(logint(k,2)+1) + O(x*x^n)))]} \\ Andrew Howroyd, Sep 17 2018