A319155 Number of bicolored graphs on 2n unlabeled nodes without isolated nodes and which are invariant when the two color classes are interchanged.
1, 1, 3, 11, 51, 337, 3500, 60936, 1866002, 102768062, 10296340496, 1890236147880, 639528747831552, 400813006079742544, 467517947968588109568, 1019290779610824185400096, 4170141472168738281510957264, 32130367702064742239376997422512
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Programs
-
Mathematica
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total @ Quotient[v + 1, 2]; A122082[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!]; a[n_] := A122082[n] - A122082[n-1]; a /@ Range[0, 17] (* Jean-François Alcover, Sep 05 2019, after Andrew Howroyd in A122082 *)