cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319155 Number of bicolored graphs on 2n unlabeled nodes without isolated nodes and which are invariant when the two color classes are interchanged.

Original entry on oeis.org

1, 1, 3, 11, 51, 337, 3500, 60936, 1866002, 102768062, 10296340496, 1890236147880, 639528747831552, 400813006079742544, 467517947968588109568, 1019290779610824185400096, 4170141472168738281510957264, 32130367702064742239376997422512
Offset: 0

Views

Author

Andrew Howroyd, Sep 25 2018

Keywords

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total @ Quotient[v + 1, 2];
    A122082[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    a[n_] := A122082[n] - A122082[n-1];
    a /@ Range[0, 17] (* Jean-François Alcover, Sep 05 2019, after Andrew Howroyd in A122082 *)

Formula

a(n) = A122082(n) - A122082(n-1).