cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319189 Number of uniform regular hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 2, 3, 10, 29, 3780, 5012107
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is uniform if all edges have the same size, and regular if all vertices have the same degree. The span of a hypergraph is the union of its edges.
Also the number of 0-1 matrices with n columns, all distinct rows, no zero columns, equal row-sums, and equal column-sums, up to a permutation of the rows.

Examples

			The a(4) = 10 edge-sets:
               {{1,2,3,4}}
              {{1,2},{3,4}}
              {{1,3},{2,4}}
              {{1,4},{2,3}}
            {{1},{2},{3},{4}}
        {{1,2},{1,3},{2,4},{3,4}}
        {{1,2},{1,4},{2,3},{3,4}}
        {{1,3},{1,4},{2,3},{2,4}}
    {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
Inequivalent representatives of the a(4) = 10 matrices:
  [1 1 1 1]
.
  [1 1 0 0] [1 0 1 0] [1 0 0 1]
  [0 0 1 1] [0 1 0 1] [0 1 1 0]
.
  [1 0 0 0] [1 1 0 0] [1 1 0 0] [1 0 1 0] [1 1 1 0]
  [0 1 0 0] [1 0 1 0] [1 0 0 1] [1 0 0 1] [1 1 0 1]
  [0 0 1 0] [0 1 0 1] [0 1 1 0] [0 1 1 0] [1 0 1 1]
  [0 0 0 1] [0 0 1 1] [0 0 1 1] [0 1 0 1] [0 1 1 1]
.
  [1 1 0 0]
  [1 0 1 0]
  [1 0 0 1]
  [0 1 1 0]
  [0 1 0 1]
  [0 0 1 1]
		

Crossrefs

Uniform hypergraphs are counted by A306021. Unlabeled uniform regular multiset partitions are counted by A319056. Regular graphs are A295193. Uniform clutters are A299353.

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{m}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{m,0,n},{k,1,Binomial[n,m]}],{n,5}]

Extensions

a(7) from Jinyuan Wang, Jun 20 2020