A319189 Number of uniform regular hypergraphs spanning n vertices.
1, 1, 2, 3, 10, 29, 3780, 5012107
Offset: 0
Examples
The a(4) = 10 edge-sets: {{1,2,3,4}} {{1,2},{3,4}} {{1,3},{2,4}} {{1,4},{2,3}} {{1},{2},{3},{4}} {{1,2},{1,3},{2,4},{3,4}} {{1,2},{1,4},{2,3},{3,4}} {{1,3},{1,4},{2,3},{2,4}} {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}} Inequivalent representatives of the a(4) = 10 matrices: [1 1 1 1] . [1 1 0 0] [1 0 1 0] [1 0 0 1] [0 0 1 1] [0 1 0 1] [0 1 1 0] . [1 0 0 0] [1 1 0 0] [1 1 0 0] [1 0 1 0] [1 1 1 0] [0 1 0 0] [1 0 1 0] [1 0 0 1] [1 0 0 1] [1 1 0 1] [0 0 1 0] [0 1 0 1] [0 1 1 0] [0 1 1 0] [1 0 1 1] [0 0 0 1] [0 0 1 1] [0 0 1 1] [0 1 0 1] [0 1 1 1] . [1 1 0 0] [1 0 1 0] [1 0 0 1] [0 1 1 0] [0 1 0 1] [0 0 1 1]
Crossrefs
Programs
-
Mathematica
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{m}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{m,0,n},{k,1,Binomial[n,m]}],{n,5}]
Extensions
a(7) from Jinyuan Wang, Jun 20 2020
Comments