cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319193 Irregular triangle where T(n,k) is the number of permutations of the integer partition with Heinz number A215366(n,k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 2, 3, 3, 4, 1, 1, 2, 2, 1, 1, 3, 6, 6, 4, 5, 1, 1, 2, 2, 2, 6, 3, 3, 3, 4, 4, 12, 10, 5, 6, 1, 1, 2, 2, 1, 3, 2, 3, 6, 6, 3, 1, 12, 4, 12, 6, 10, 5, 20, 15, 6, 7, 1, 1, 2, 2, 2, 3, 2, 6, 3, 3, 4, 6, 6, 1, 12, 12, 4, 12
Offset: 0

Views

Author

Gus Wiseman, Sep 13 2018

Keywords

Comments

A refinement of Pascal's triangle, these are the unsigned coefficients appearing in the expansion of homogeneous symmetric functions in terms of elementary symmetric functions.

Examples

			Triangle begins:
  1
  1
  1  1
  1  2  1
  1  1  2  3  1
  1  2  2  3  3  4  1
  1  2  2  1  1  3  6  6  4  5  1
The fourth row corresponds to the symmetric function identity: h(4) = -e(4) + e(22) + 2 e(31) - 3 e(211) + e(1111).
		

Crossrefs

A different row ordering is A072811.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i<2, [2^n], [seq(
          map(p-> p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..n/i)])
        end:
    T:= n-> map(m-> (l-> add(i, i=l)!/mul(i!, i=l))(map(
            i-> i[2], ifactors(m)[2])), sort(b(n$2)))[]:
    seq(T(n), n=0..10);  # Alois P. Heinz, Feb 14 2020
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Permutations[primeMS[k]]],{n,6},{k,Sort[Times@@Prime/@#&/@IntegerPartitions[n]]}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0 || i < 2, {2^n}, Flatten[Table[ #*Prime[i]^j& /@ b[n - i*j, i - 1], {j, 0, n/i}]]];
    T[n_] := Map[Function[m, Function[l, Total[l]!/Times @@ (l!)][ FactorInteger[m][[All, 2]]]], Sort[b[n, n]]];
    T /@ Range[0, 10] // Flatten (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

T(n,k) = A008480(A215366(n,k)).

Extensions

T(0,1)=1 prepended by Alois P. Heinz, Feb 14 2020