cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319205 a(n) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 + 17*18*19*20 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 29, 54, 234, 1704, 1713, 1794, 2694, 13584, 13597, 13766, 16314, 57264, 57281, 57570, 63078, 173544, 173565, 174006, 184170, 428568, 428593, 429218, 446118, 919968, 919997, 920838, 946938, 1783008, 1783041, 1784130, 1822278, 3196728, 3196765
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=4.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4 + 5 = 29;
a(6) = 1*2*3*4 + 5*6 = 54;
a(7) = 1*2*3*4 + 5*6*7 = 234;
a(8) = 1*2*3*4 + 5*6*7*8 = 1704;
a(9) = 1*2*3*4 + 5*6*7*8 + 9 = 1713;
a(10) = 1*2*3*4 + 5*6*7*8 + 9*10 = 1794;
a(11) = 1*2*3*4 + 5*6*7*8 + 9*10*11 = 2694;
a(12) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 = 13584;
a(13) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13 = 13597;
a(14) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14 = 13766;
a(15) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15 = 16314;
a(16) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 = 57264;
a(17) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 + 17 = 57281;
a(18) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 + 17*18 = 57570;
a(19) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 + 17*18*19 = 63078;
etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) this sequence, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) A319212.

Programs

  • Mathematica
    a[n_]:=Sum[(4*i)!/(4*i-4)!, {i, 1, Floor[n/4] }] + Sum[(1-Sign[Mod[n-j,4]])*Product[n-i+1, {i, 1, j}], {j, 1, 3}] ; Array[a, 40] (* Stefano Spezia, Sep 17 2018 *)
  • PARI
    Vec(x*(1 + x + 4*x^2 + 18*x^3 + 20*x^5 + 160*x^6 + 1380*x^7 - 6*x^8 - 34*x^9 + 40*x^10 + 3720*x^11 + 8*x^12 + 4*x^13 - 192*x^14 + 1020*x^15 - 3*x^16 + 9*x^17 - 12*x^18 + 6*x^19) / ((1 - x)^6*(1 + x)^5*(1 + x^2)^5) + O(x^40)) \\ Colin Barker, Sep 14 2018

Formula

a(n) = Sum_{i=1..floor(n/4)} (4*i)!/(4*i-4)! + Sum_{j=1..3} (1-sign((n-j) mod 4)) * (Product_{i=1..j} n-i+1).
From Colin Barker, Sep 14 2018: (Start)
G.f.: x*(1 + x + 4*x^2 + 18*x^3 + 20*x^5 + 160*x^6 + 1380*x^7 - 6*x^8 - 34*x^9 + 40*x^10 + 3720*x^11 + 8*x^12 + 4*x^13 - 192*x^14 + 1020*x^15 - 3*x^16 + 9*x^17 - 12*x^18 + 6*x^19) / ((1 - x)^6*(1 + x)^5*(1 + x^2)^5).
a(n) = a(n-1) + 5*a(n-4) - 5*a(n-5) - 10*a(n-8) + 10*a(n-9) + 10*a(n-12) - 10*a(n-13) - 5*a(n-16) + 5*a(n-17) + a(n-20) - a(n-21) for n>21.
(End)