A319251 Triangle read by rows: T(n,k) is the number of permutations pi of [n] with k descents such that s(pi) avoids the patterns 132, 231, 312, and 321, where s denotes West's stack-sorting map.
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 13, 28, 13, 1, 1, 19, 70, 70, 19, 1, 1, 26, 145, 250, 145, 26, 1, 1, 34, 266, 700, 700, 266, 34, 1, 1, 43, 448, 1666, 2548, 1666, 448, 43, 1, 1, 53, 708, 3528, 7644, 7644, 3528, 708, 53, 1
Offset: 1
Examples
Triangle begins: 1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 13, 28, 13, 1, 1, 19, 70, 70, 19, 1 ...
Links
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
Programs
-
Mathematica
Flatten[Table[Table[(1/n) Binomial[n, m + 1] Binomial[n, m] + Sum[Sum[(1/(n - i - 1)) Binomial[n - i - 1, j] Binomial[n - i - 1, j - 1] (1/i) Binomial[i, m - j + 1] Binomial[i, m - j], {j, 1, m}], {i, 1, n - 2}], {m, 0, n - 1}], {n, 1, 10}]]
Formula
T(n,k) = N(n,k+1) + Sum_{i=1..n-2} Sum_{j=1..m} N(n-i-1,j) * N(i,k-j+1), where N(i,j) = (1/i) * binomial(i,j) * binomial(i,j-1) are the Narayana numbers given in A001263.
From Vladimir Kruchinin, Nov 16 2020: (Start)
T(n,k) = N(n,k) +2*C(n-1,k-2)*C(n-1,k)/(n-1). (End)
Comments