cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319254 Array read by antidiagonals: T(n,k) is the number of series-reduced rooted trees with n leaves of k colors.

Original entry on oeis.org

1, 2, 1, 3, 3, 2, 4, 6, 10, 5, 5, 10, 28, 40, 12, 6, 15, 60, 156, 170, 33, 7, 21, 110, 430, 948, 785, 90, 8, 28, 182, 965, 3396, 6206, 3770, 261, 9, 36, 280, 1890, 9376, 28818, 42504, 18805, 766, 10, 45, 408, 3360, 21798, 97775, 256172, 301548, 96180, 2312
Offset: 1

Views

Author

Andrew Howroyd, Sep 15 2018

Keywords

Comments

Not all colors need to be used.
See table 2.3 in the Johnson reference.

Examples

			Array begins:
==================================================================
n\k|   1     2       3        4         5         6          7
---+--------------------------------------------------------------
1  |   1     2       3        4         5         6          7 ...
2  |   1     3       6       10        15        21         28 ...
3  |   2    10      28       60       110       182        280 ...
4  |   5    40     156      430       965      1890       3360 ...
5  |  12   170     948     3396      9376     21798      44856 ...
6  |  33   785    6206    28818     97775    269675     642124 ...
7  |  90  3770   42504   256172   1068450   3496326    9632960 ...
8  | 261 18805  301548  2357138  12081605  46897359  149491104 ...
9  | 766 96180 2195100 22253672 140160650 645338444 2379859608 ...
...
		

Crossrefs

Columns 1..5 are A000669, A050381, A220823, A220824, A220825.
Main diagonal is A319369.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Sep 17 2018
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
    Table[A[n, 1 + d - n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Sep 11 2019, after Alois P. Heinz *)
  • PARI
    \\ here R(n,k) gives k'th column as a vector.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v,[0]))[n])); v}
    {my(T=Mat(vector(8, k, R(8, k)~))); for(n=1, #T~, print(T[n,]))} \\ Andrew Howroyd, Sep 15 2018