cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000586 Number of partitions of n into distinct primes.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 4, 4, 4, 5, 5, 5, 6, 5, 6, 7, 6, 9, 7, 9, 9, 9, 11, 11, 11, 13, 12, 14, 15, 15, 17, 16, 18, 19, 20, 21, 23, 22, 25, 26, 27, 30, 29, 32, 32, 35, 37, 39, 40, 42, 44, 45, 50, 50, 53, 55, 57, 61, 64, 67, 70, 71, 76, 78, 83, 87, 89, 93, 96
Offset: 0

Views

Author

Keywords

Examples

			n=16 has a(16) = 3 partitions into distinct prime parts: 16 = 2+3+11 = 3+13 = 5+11.
		

References

  • H. Gupta, Certain averages connected with partitions. Res. Bull. Panjab Univ. no. 124 1957 427-430.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in two entries, N0004 and N0039).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A070215, A000607 (parts may repeat), A112022, A000009, A046675, A319264, A319267.

Programs

  • Haskell
    a000586 = p a000040_list where
       p _  0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 05 2012
    
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(ithprime(i)>n, 0, b(n-ithprime(i), i-1))))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 15 2012
  • Mathematica
    CoefficientList[Series[Product[(1+x^Prime[k]), {k, 24}], {x, 0, Prime[24]}], x]
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i-1] + If[Prime[i] > n, 0, b[n - Prime[i], i-1]]]]; a[n_] := b[n, PrimePi[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
    nmax = 100; pmax = PrimePi[nmax]; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; poly[[3]] = 1; Do[p = Prime[k]; Do[poly[[j]] += poly[[j - p]], {j, nmax + 1, p + 1, -1}];, {k, 2, pmax}]; poly (* Vaclav Kotesovec, Sep 20 2018 *)
  • PARI
    a(n,k=n)=if(n<1, !n, my(s);forprime(p=2,k,s+=a(n-p,p-1));s) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from sympy import isprime, primerange
    from functools import cache
    @cache
    def a(n, k=None):
        if k == None: k = n
        if n < 1: return int(n == 0)
        return sum(a(n-p, p-1) for p in primerange(1, k+1))
    print([a(n) for n in range(83)]) # Michael S. Branicky, Sep 03 2021 after Charles R Greathouse IV

Formula

G.f.: Product_{k>=1} (1+x^prime(k)).
a(n) = A184171(n) + A184172(n). - R. J. Mathar, Jan 10 2011
a(n) = Sum_{k=0..A024936(n)} A219180(n,k). - Alois P. Heinz, Nov 13 2012
log(a(n)) ~ Pi*sqrt(2*n/(3*log(n))) [Roth and Szekeres, 1954]. - Vaclav Kotesovec, Sep 13 2018

Extensions

Entry revised by N. J. A. Sloane, Jun 10 2012

A319266 Indices of primes in sequence A000607.

Original entry on oeis.org

5, 6, 7, 8, 10, 12, 17, 18, 19, 27, 34, 36, 46, 48, 64, 65, 72, 73, 76, 86, 103, 106, 118, 125, 133, 153, 156, 159, 178, 201, 259, 263, 266, 270, 284, 295, 306, 307, 318, 352, 388, 406, 513, 515, 528, 542, 548, 620, 653, 669, 673, 743, 747, 770, 795, 823, 839
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 16 2018

Keywords

Examples

			12 is in the sequence because A000607(12) = 7 is prime.
		

Crossrefs

A319264 Numbers k such that A000586(k) is divisible by k.

Original entry on oeis.org

1, 4, 6, 76, 135, 247, 354, 590, 909, 1040, 48232, 106763, 333640, 355837
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 16 2018

Keywords

Comments

No other terms below 2000000. - Vaclav Kotesovec, Sep 26 2018

Examples

			135 is in the sequence because A000586(135) = 5 * 135.
1040 is in the sequence because A000586(1040) = 4201384 * 1040.
		

Crossrefs

Showing 1-3 of 3 results.