A319272 Numbers whose prime multiplicities are distinct and whose prime indices are term of the sequence.
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 31, 32, 37, 40, 44, 45, 48, 49, 50, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 75, 76, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 103, 107, 108, 112, 121, 124, 125, 127, 128, 131, 135, 136, 144, 147, 148
Offset: 1
Keywords
Examples
36 is not in the sequence because 36 = 2^2 * 3^2 does not have distinct prime multiplicities. The sequence of terms of the sequence followed by their Matula-Goebel trees begins: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 7: ((oo)) 8: (ooo) 9: ((o)(o)) 11: ((((o)))) 12: (oo(o)) 16: (oooo) 17: (((oo))) 18: (o(o)(o)) 19: ((ooo)) 20: (oo((o))) 23: (((o)(o))) 24: (ooo(o)) 25: (((o))((o))) 27: ((o)(o)(o)) 28: (oo(oo)) 31: (((((o)))))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
mgsiQ[n_]:=Or[n==1,And[UnsameQ@@Last/@FactorInteger[n],And@@Cases[FactorInteger[n],{p_,_}:>mgsiQ[PrimePi[p]]]]]; Select[Range[100],mgsiQ]
-
PARI
is(n)={my(f=factor(n)); if(#Set(f[,2])<#f~, 0, for(i=1, #f~, if(!is(primepi(f[i,1])), return(0))); 1)} { select(is, [1..200]) } \\ Andrew Howroyd, Mar 01 2020
Extensions
Terms a(53) and beyond from Andrew Howroyd, Mar 01 2020
Comments