A319368 Triangle read by rows: T(n,k) is the number of simple connected vertex transitive graphs with n nodes and valency k, (0 <= k < n).
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 3, 2, 1, 1, 0, 0, 1, 0, 3, 0, 2, 0, 1, 0, 0, 1, 3, 3, 4, 3, 2, 1, 1, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 0, 1, 4, 10, 12, 13, 11, 7, 4, 1, 1, 0, 0, 1, 0, 3, 0, 4, 0, 3, 0, 1, 0, 1
Offset: 1
Examples
Triangle begins: 1; 0, 1; 0, 0, 1; 0, 0, 1, 1; 0, 0, 1, 0, 1; 0, 0, 1, 2, 1, 1; 0, 0, 1, 0, 1, 0, 1; 0, 0, 1, 2, 3, 2, 1, 1; 0, 0, 1, 0, 3, 0, 2, 0, 1; 0, 0, 1, 3, 3, 4, 3, 2, 1, 1; 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1; 0, 0, 1, 4, 10, 12, 13, 11, 7, 4, 1, 1; 0, 0, 1, 0, 3, 0, 4, 0, 3, 0, 1, 0, 1; 0, 0, 1, 3, 5, 6, 8, 9, 6, 6, 3, 2, 1, 1; 0, 0, 1, 0, 7, 0, 12, 0, 12, 0, 8, 0, 3, 0, 1; 0, 0, 1, 4, 13, 25, 39, 47, 48, 40, 27, 16, 7, 3, 1, 1; 0, 0, 1, 0, 4, 0, 7, 0, 10, 0, 7, 0, 4, 0, 1, 0, 1; 0, 0, 1, 5, 12, 23, 36, 45, 53, 54, 45, 38, 24, 16, 7, 4, 1, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..496
- B. D. McKay and G. F. Royle, The transitive graphs with at most 26 vertices, Ars Combin. 30 (1990), 161-176. (Annotated scanned copy)
- Gordon Royle, Transitive Graphs
- Eric Weisstein's World of Mathematics, Vertex-Transitive Graph.
Formula
T(n,k) = Sum_{d|n} moebius(n/d) * A319367(d,k).