cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319377 Number of series-reduced rooted trees with n leaves of exactly two colors.

Original entry on oeis.org

1, 6, 30, 146, 719, 3590, 18283, 94648, 497757, 2652898, 14307845, 77958746, 428588051, 2374676854, 13247984959, 74357762790, 419604029622, 2379243477538, 13549087798391, 77458553063930, 444383895880897, 2557639072274418, 14763596994726379, 85449948037167684
Offset: 2

Views

Author

Andrew Howroyd, Sep 17 2018

Keywords

Crossrefs

Column 2 of A319376.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    a:= n-> A(n, 2) -2*A(n, 1):
    seq(a(n), n=2..30);  # Alois P. Heinz, Sep 18 2018
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n*k, b[n, n - 1, k]];
    a[n_] := A[n, 2] - 2*A[n, 1];
    a /@ Range[2, 30] (* Jean-François Alcover, Sep 24 2019, after Alois P. Heinz *)
  • PARI
    \\ here R(n,k) is k-th column of A319254.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
    seq(n)={(R(n,2)-2*R(n,1))[2..n]}

Formula

a(n) = A050381(n) - 2*A000669(n).