A319435 Number of partitions of n^2 into exactly n nonzero squares.
1, 1, 0, 1, 1, 1, 4, 4, 9, 16, 24, 52, 83, 152, 305, 515, 959, 1773, 3105, 5724, 10255, 18056, 32584, 58082, 101719, 179306, 317610, 552730, 962134, 1683435, 2899064, 4995588, 8638919, 14746755, 25196684, 43082429, 72959433, 123554195, 209017908, 351164162
Offset: 0
Keywords
Examples
a(0) = 1: the empty partition. a(1) = 1: 1. a(2) = 0: there is no partition of 4 into exactly 2 nonzero squares. a(3) = 1: 441. a(4) = 1: 4444. a(5) = 1: 94444. a(6) = 4: (25)44111, (16)(16)1111, (16)44444, 999441. a(7) = 4: (25)(16)41111, (25)444444, (16)(16)44441, (16)999411. a(8) = 9: (49)9111111, (36)(16)441111, (36)4444444, (25)(25)911111, (25)(16)944411, (25)9999111, (16)(16)(16)94111, (16)9999444, 99999991.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, `if`(issqr(n), n, h(n-1))) end: b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1))) end: a:= n-> (s-> b(s$2, n)-`if`(n=0, 0, b(s$2, n-1)))(n^2): seq(a(n), n=0..40);
-
Mathematica
h[n_] := h[n] = If[n < 1, 0, If[Sqrt[n] // IntegerQ, n, h[n - 1]]]; b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1 || t < 1, 0, b[n, h[i - 1], t] + b[n - i, h[Min[n - i, i]], t - 1]]]; a[n_] := Function[s, b[s, s, n] - If[n == 0, 0, b[s, s, n - 1]]][n^2]; a /@ Range[0, 40] (* Jean-François Alcover, Nov 06 2020, after Alois P. Heinz *)
-
SageMath
# uses[GeneralizedEulerTransform(n, a) from A338585], slow. def A319435List(n): return GeneralizedEulerTransform(n, lambda n: n^2) print(A319435List(10)) # Peter Luschny, Nov 12 2020
Formula
a(n) = A243148(n^2,n).